mediation analysis in neuroimaging studies
play

Mediation Analysis in Neuroimaging Studies Yi Zhao Department of - PowerPoint PPT Presentation

Mediation Analysis in Neuroimaging Studies Yi Zhao Department of Biostatistics Johns Hopkins Bloomberg School of Public Health January 15, 2019 Overview Introduction Functional mediation analysis High-dimensional mediation analysis


  1. Mediation Analysis in Neuroimaging Studies Yi Zhao Department of Biostatistics Johns Hopkins Bloomberg School of Public Health January 15, 2019

  2. Overview Introduction Functional mediation analysis High-dimensional mediation analysis Multimodal neuroimaging data integration Discussion 2 / 35

  3. Mediation analysis Mediator ( M ) β α Treatment ( X ) Outcome ( Y ) γ • Quantifies the intermediate effect of the mediator 3 / 35

  4. Mediation analysis Mediator ( M ) β α Treatment ( X ) Outcome ( Y ) γ • Quantifies the intermediate effect of the mediator • Helps clarify the underlying causal mechanism 3 / 35

  5. Mediation analysis Mediator ( M ) β α Treatment ( X ) Outcome ( Y ) γ • Quantifies the intermediate effect of the mediator • Helps clarify the underlying causal mechanism • Popular approach: structural equation modeling (SEM) M = Xα + ǫ 1 Y = Xγ + Mβ + ǫ 2 • αβ : indirect (mediation) effect • γ : direct effect 3 / 35

  6. Neuroimaging studies • Non-invasive techniques • e.g. structural/diffusion/functional MRI, PET, MEG/EEG • Functional MRI (fMRI) • brain activity: changes in brain hemodynamics • resting-state and task-based fMRI Credit: NSF 4 / 35

  7. Neuroimaging studies • Non-invasive techniques • e.g. structural/diffusion/functional MRI, PET, MEG/EEG • Functional MRI (fMRI) • brain activity: changes in brain hemodynamics • resting-state and task-based fMRI Credit: NSF Objective • Resting-state fMRI • brain co-activation (functional connectivity) • impact on cognitive behaviors 4 / 35

  8. Neuroimaging studies • Non-invasive techniques • e.g. structural/diffusion/functional MRI, PET, MEG/EEG • Functional MRI (fMRI) • brain activity: changes in brain hemodynamics • resting-state and task-based fMRI Credit: NSF Objective • Resting-state fMRI • brain co-activation (functional connectivity) • impact on cognitive behaviors • Task-based fMRI • causal effect of stimulus on brain activity • brain connectivity (effective connectivity) 4 / 35

  9. Challenges • Large n with hierarchically nested data structure • participants ( → sessions) → tasks/trials • population level inference • Large p • 10 5 ∼ 10 6 uniformly spaced voxels • > 100 putative functional/anatomical regions • high-dimensional problem • Complex data output • time series • functional data 5 / 35

  10. Challenges • Large n with hierarchically nested data structure • participants ( → sessions) → tasks/trials • population level inference • Large p • 10 5 ∼ 10 6 uniformly spaced voxels • > 100 putative functional/anatomical regions • high-dimensional problem • Complex data output • time series • functional data 5 / 35

  11. Motivating example: response conflict task • Response conflict task • “GO” trial: button press • “STOP” trial: withhold pressing • Brain regions of interest • primary motor cortex (M1) : responsible for movement • presupplementary motor area (preSMA) : primary region for motor response prohibition • Objective : quantify causal effects • stimulus → preSMA, stimulus → M1 • preSMA → M1 (Obeso et al., 2013) 6 / 35

  12. Motivating example: response conflict task • Response conflict task • “GO” trial: button press • “STOP” trial: withhold pressing • Brain regions of interest • primary motor cortex (M1) : responsible for movement • presupplementary motor area (preSMA) : primary region for motor response prohibition • Objective : quantify causal effects • stimulus → preSMA, stimulus → M1 • preSMA → M1 (Obeso et al., 2013) 6 / 35

  13. Motivating example: response conflict task • Response conflict task • “GO” trial: button press • “STOP” trial: withhold pressing • Brain regions of interest • primary motor cortex (M1) : responsible for movement • presupplementary motor area (preSMA) : primary region for motor response prohibition • Objective : quantify causal effects • stimulus → preSMA, stimulus → M1 • preSMA → M1 (Obeso et al., 2013) 6 / 35

  14. Mediation analysis Mediator M ( t ) Treatment X ( t ) Outcome Y ( t ) • Conflict response task: STOP/GO • Mediator region: preSMA, outcome region: M1 • Mediation model on functional measures • Dynamic causal effects 7 / 35

  15. Functional mediation model Mediator M ( t ) For ∀ t ∈ [0 , T ] , • Concurrent model Treatment X ( t ) Outcome Y ( t ) M ( t ) = X ( t ) α ( t ) + ǫ 1 ( t ) Y ( t ) = X ( t ) γ ( t ) + M ( t ) β ( t ) + ǫ 2 ( t ) • Historical influence model � M ( t ) = X ( s ) α ( s, t ) d s + ǫ 1 ( t ) Ω 1 t � � Y ( t ) = X ( s ) γ ( s, t ) d s + M ( s ) β ( s, t ) d s + ǫ 2 ( t ) Ω 2 Ω 3 t t • Ω k t = [( t − δ k ) ∨ 0 , t ] , δ k ∈ (0 , + ∞ ] , k = 1 , 2 , 3 • if δ k ∈ [ T, + ∞ ] : whole history 8 / 35

  16. • Concurrent model E � Y ( t ; { x ( s ) , m ( s ) } H t ) − Y ( t ; { x ′ ( s ) , m ( s ) } H t ) � DE( t ) = � x ( t ) − x ′ ( t ) � = γ ( t ) E � Y ( t ; { x ( s ) , m ( s ; { x ( u ) } H s ) } H t ) − Y ( t ; { x ( s ) , m ( s ; { x ′ ( u ) } H s ) } H t ) � IE( t ) = � x ( t ) − x ′ ( t ) � = α ( t ) β ( t ) • Historical influence model E � Y ( t ; { x ( s ) , m ( s ) } H t ) − Y ( t ; { x ′ ( s ) , m ( s ) } H t ) � DE( t ) = � � x ( s ) − x ′ ( s ) � = γ ( s, t ) d s Ω 2 t E � Y ( t ; { x ( s ) , m ( s ; { x ( u ) } H s ) } H t ) − Y ( t ; { x ( s ) , m ( s ; { x ′ ( u ) } H s ) } H t ) � IE( t ) = � �� � ( x ( u ) − x ′ ( u )) α ( u, s ) d u = β ( s, t ) d s Ω 3 Ω 1 s t • { x ( s ) } H t : history of variable x , H t = [0 , t ] • M ( t ; { x ( s ) } H t ) : potential outcome of M at time t if X has the history { x ( s ) } H t • Y ( t ; { x ( s ) , m ( s ) } H t ) : potential outcome of Y at time t when the history X and M at level { x ( s ) } H t and { m ( s ) } H t 9 / 35

  17. • Historical influence model Direct effect (DE) Indirect effect (IE) ( x ( u ) − x ′ ( u )) α ( u, s ) β ( s, t ) � t ( x ( s ) − x ′ ( s )) γ ( s, t ) DE( t ) = t − δ ∨ 0 ( x ( s ) − x ′ ( s )) γ ( s, t ) d s t − δ s t t − 2 δ s t t − δ t − δ t � t � s IE( t ) = s − δ ∨ 0 ( x ( u ) − x ′ ( u )) α ( u, s ) β ( s, t ) d u d s u t − δ ∨ 0 • δ 1 = δ 2 = δ 3 = δ , δ small 10 / 35

  18. • Historical influence model Direct effect (DE) Indirect effect (IE) ( x ( u ) − x ′ ( u )) α ( u, s ) β ( s, t ) � t ( x ( s ) − x ′ ( s )) γ ( s, t ) DE( t ) = 0 ( x ( s ) − x ′ ( s )) γ ( s, t ) d s s t 0 s t t � t � s IE( t ) = 0 ( x ( u ) − x ′ ( u )) α ( u, s ) β ( s, t ) d u d s u 0 • δ 1 = δ 2 = δ 3 = δ , δ ∈ [ T, + ∞ ] 10 / 35

  19. Response conflict task fMRI study 1 • N = 121 right-handed healthy participants • randomized STOP/GO trials: 90 GO trials and 32 STOP trials • mediator region: preSMA-post (MNI: (-4,-8,60)) • outcome region: M1 (MNI: (-41,-20,62)) • TR = 2 s, 184 time points • X ( t ) : convolution of event onsets and canonical HRF • M ( t ) and Y ( t ) : BOLD signals after motion correction 1 OpenfMRI ds000030 11 / 35

  20. • Concurrent model M ( t ) = X ( t ) α ( t ) + ǫ 1 ( t ) Y ( t ) = X ( t ) γ ( t ) + M ( t ) β ( t ) + ǫ 2 ( t ) • Historical influence model � M ( t ) = X ( s ) α ( s, t ) d s + ǫ 1 ( t ) Ω 1 t � � Y ( t ) = X ( s ) γ ( s, t ) d s + M ( s ) β ( s, t ) d s + ǫ 2 ( t ) Ω 2 Ω 3 t t • Ω k t = [( t − δ k ) ∨ 0 , t ] , δ k ∈ (0 , + ∞ ] , k = 1 , 2 , 3 • if δ k ∈ [ T, + ∞ ] : whole history • δ = 2 , 4 , 6 , 10 , 20 , 30 , ∞ (seconds) 12 / 35

  21. Model selection • mean squared error: θ i observed M i or Y i � T N � θ ) = 1 θ i ( t ) − θ i ( t )) 2 d t MSE(ˆ (ˆ N 0 i =1 Historical Historical ( ∼ X ) Concurrent ( ∼ M ) δ = 2 δ = 4 δ = 6 δ = 10 δ = 20 δ = 30 δ = ∞ 353.460 352.645 352.244 351.988 351.652 351.179 351.272 357.396 M δ = 2 212.331 212.308 211.960 212.333 212.378 212.130 212.343 δ = 4 211.324 211.227 211.062 211.064 211.124 211.070 211.572 δ = 6 211.883 211.663 211.541 211.546 211.592 211.575 212.110 Y 220.203 δ = 10 214.277 214.035 213.909 213.953 213.989 213.971 214.510 δ = 20 218.383 218.098 217.878 217.928 218.312 218.247 218.765 δ = 30 221.183 220.915 220.666 220.685 221.041 221.266 221.727 δ = ∞ 295.291 294.938 294.904 294.695 294.820 294.742 301.385 13 / 35

  22. Mediator: preSMA-post (MNI: ( − 4 , − 8 , 60) ) • STOP trial: δ MX = 20 , δ Y X = 6 , δ Y M = 4 14 / 35

  23. Challenges • Large n with hierarchically nested data structure • participants ( → sessions) → tasks/trials • population level inference • Large p • 10 5 ∼ 10 6 uniformly spaced voxels • > 100 putative functional/anatomical regions • high-dimensional problem • Complex data output • time series • functional data 15 / 35

  24. Single modality Mediator p ( M p ) . . . a p Mediator 2 ( M 2 ) b p a 2 b 2 a 1 b 1 Mediator 1 ( M 1 ) Treatment ( X ) Outcome ( Y ) c 16 / 35

  25. Single modality Mediator p ( M p ) d 2 p . . . d 1 p a p Mediator 2 ( M 2 ) b p a 2 b 2 d 12 a 1 b 1 Mediator 1 ( M 1 ) Treatment ( X ) Outcome ( Y ) c 16 / 35

Recommend


More recommend