mechanized proofs for a recursive authentication protocol
play

Mechanized Proofs for a Recursive Authentication Protocol Lawrence - PowerPoint PPT Presentation

Recursive Authentication Protocol 1 L. C. Paulson Mechanized Proofs for a Recursive Authentication Protocol Lawrence C. Paulson Computer Laboratory University of Cambridge Recursive Authentication Protocol 2 L. C. Paulson Overview of the


  1. Recursive Authentication Protocol 1 L. C. Paulson Mechanized Proofs for a Recursive Authentication Protocol Lawrence C. Paulson Computer Laboratory University of Cambridge

  2. Recursive Authentication Protocol 2 L. C. Paulson Overview of the Protocol • Based on Otway-Rees • Distributes session keys for any number of agents • Can be implemented as remote procedure calls • “application components are in control of security policy and its enforcement” — John Bull • Some modifications to assist proofs

  3. Recursive Authentication Protocol 3 L. C. Paulson The Protocol, with 3 Clients S C,S,Nc, {Kcs,S,Nc}Kc, B,C,Nb, {Kbc,B,Nc}Kc, A,B,Na,~ {Kbc,C,Nb}Kb, {Kab,A,Nb}Kb, B,C,Nb, {Kab,B,Na}Ka A,B,Na,~ A,B,Na,~ A B C {Kab,B,Na}Ka {Kbc,C,Nb}Kb, {Kab,A,Nb}Kb, {Kab,B,Na}Ka

  4. Recursive Authentication Protocol 4 L. C. Paulson The Protocol: Accumulation of Requests Hashing to make Message Authentication Codes: Hash X Y ≡ { | Hash { | X, Y | } , Y | } 1 . A → B : Hash Ka { | A, B, Na, −| } 2 . B → C : Hash Kb { | B, C, Nb, Hash Ka { | A, B, Na, −| }| } 2 ′ . C → S : Hash Kc { | C, S, Nc, Hash Kb { | B, C, Nb, · · ·| }| } No limit on the nesting of requests

  5. Recursive Authentication Protocol 5 L. C. Paulson The Protocol: Distribution of Certificates 3 . S → C : { | Kcs, S, Nc | } Kc , { | Kbc, B, Nc | } Kc , { | Kbc, C, Nb | } Kb , { | Kab , A, Nb | } Kb , { | Kab , B, Na | } Ka 4 . C → B : { | Kbc, C, Nb | } Kb , { | Kab , A, Nb | } Kb , { | Kab , B, Na | } Ka 4 ′ . B → A : { | Kab , B, Na | } Ka

  6. Recursive Authentication Protocol 6 L. C. Paulson The Verification Method • Formal proof, not finite state checking • Trace semantics, no beliefs or other modalities • Inductive definitions: a simple, general model of action • Any number of interleaved runs • A general & uniform attacker • Mechanized using Isabelle/HOL

  7. Recursive Authentication Protocol 7 L. C. Paulson Processing Message Histories • parts: message components Crypt KX � X parts H contains everything potentially recoverable from H Crypt KX, K − 1 � X • analz: message decryption analz H contains everything currently recoverable from H • synth: message faking X, K � Crypt KX synth H contains everything expressible using H

  8. Recursive Authentication Protocol 8 L. C. Paulson The Introduction of Hashing Allow the message Hash X . How to extend the operators? • Don’t add Hash X ∈ parts H = ⇒ X ∈ parts H • Don’t add Hash X ∈ analz H = ⇒ X ∈ analz H • Do add X ∈ synth H = ⇒ Hash X ∈ synth H Hashing is one-way, so hash values are atomic Components vs Ingredients

  9. Recursive Authentication Protocol 9 L. C. Paulson Inductively Defining the Protocol, 1–2 1. If evs is a trace and Na is fresh, may add Says A B ( Hash shrK A { | A, B, Na, −| } ) 2. If evs has Says A ′ B Pa and Pa = { | Xa, A, B, Na, P | } and Nb is fresh, may add Says B C ( Hash shrK B { | B, C, Nb, Pa | } ) B doesn’t know the true sender & can’t verify hash Xa

  10. Recursive Authentication Protocol 10 L. C. Paulson Inductively Defining the Protocol, 3–4 3. If evs contains the event Says B ′ S Pb , may add a suitable response Says S B Rb 4. If evs contains the events Says B C ( Hash shrK B { | B, C, Nb, Pa | } ) Says C ′ B { | Crypt ( shrK B ) { | Kbc, C, Nb | } , Crypt ( shrK B ) { | Kab , A, Nb | } , R | } may add Says B A R

  11. Recursive Authentication Protocol 11 L. C. Paulson Inductively Modelling the Server, 1 1. If Kab is a fresh key (not used in evs ) then ( Hash shrK A { | A, B, Na, −| } , (request) Crypt ( shrK A ) { | Kab , B, Na | } , (response) Kab ) ∈ respond evs (last key) Only if the hash can be verified

  12. Recursive Authentication Protocol 12 L. C. Paulson Inductively Modelling the Server, 2 2. If ( Pa, Ra, Kab ) ∈ respond evs and Kbc is fresh and Pa = Hash shrK A { | A, B, Na, P | } then ( Hash shrK B { | B, C, Nb, Pa | } , (request) { | Crypt ( shrK B ) { | Kbc, C, Nb | } , (response) Crypt ( shrK B ) { | Kab , A, Nb | } , Ra | } , Kbc ) ∈ respond evs (last key)

  13. Recursive Authentication Protocol 13 L. C. Paulson An Easy Proof: Long-Term Keys Aren’t Lost By induction over ( P, R, K ′ ) ∈ respond evs : K ∈ parts { R } = ⇒ K is fresh By induction over evs ∈ recur lost : K ∈ parts H ⇐ ⇒ K ∈ lost (any long-term key K found in traffic was lost initially) Typically need two nested inductions

  14. Recursive Authentication Protocol 14 L. C. Paulson Unicity of Nonces At most one hash in the history H contains • the key of an uncompromised agent ( A �∈ lost ) • any specified nonce value, Na ∃ B ′ P ′ . ∀ B P. Hash { | Key ( shrK A ) , A, B, Na, P | } ∈ parts H → B = B ′ ∧ P = P ′

  15. Recursive Authentication Protocol 15 L. C. Paulson Unicity of Session Keys At most two certificates in the response ( R ) contain • any particular session key, Kab . . . • made for two uncompromised agents ( A, B �∈ lost ) ∃ A ′ B ′ . ∀ A B N. Crypt ( Key ( shrK A )) { | Kab , B, N | } ∈ parts { R } → ( A ′ = A ∧ B ′ = B ) ∨ ( A ′ = B ∧ B ′ = A )

  16. Recursive Authentication Protocol 16 L. C. Paulson Secrecy Essential lemma, for any session key Kab : K ∈ analz ( { Kab } ∪ H ) ⇐ ⇒ K = Kab ∨ K ∈ analz H Guarantee between uncompromised agents A and B : Crypt ( shrK A ) { | Kab , B, N | } ∈ parts H = ⇒ Kab �∈ analz H Nonces not involved in proofs

  17. Recursive Authentication Protocol 17 L. C. Paulson Difficulties involving Certificates • Danger of re-ordering • Need for explicitness: name of other agent • Special treatment of first & last agents • Complexity of respond ’s definition Simpler version: arbitrary lists of certificates

  18. Recursive Authentication Protocol 18 L. C. Paulson Limitations of the Proofs • Authentication of B to A not proved • Authentication of A to B not provable! • No dynamic loss of long-term keys • Encryption assumed secure • Type confusion not considered (not relevant?)

  19. Recursive Authentication Protocol 19 L. C. Paulson Statistics • Two weeks human effort for proofs • 30 lemmas and theorems • 135 tactic commands • Under five minutes CPU time • Savings from protocol’s symmetries

  20. Recursive Authentication Protocol 20 L. C. Paulson Conclusions • Inductive definitions can model non-trivial processes • Nested inductions cause no problems • Multiple session keys are no obstacle • Many types of protocols can be analyzed • Must distinguish abstract level from implementation

Recommend


More recommend