measurable stochastics for brane calculus
play

Measurable Stochastics for Brane Calculus Giorgio Bacci Marino - PowerPoint PPT Presentation

Measurable Stochastics for Brane Calculus Giorgio Bacci Marino Miculan Department of Mathematics and Computer Science University of Udine, Italy MeCBIC 2010 23rd August 2010, Jena 1 / 23 Stochastic process algebras The semantics of process


  1. Measurable Stochastics for Brane Calculus Giorgio Bacci Marino Miculan Department of Mathematics and Computer Science University of Udine, Italy MeCBIC 2010 23rd August 2010, Jena 1 / 23

  2. Stochastic process algebras The semantics of process algebras is classically described by means of Labelled Transition Systems (LTSs) a − → Q P The semantics of stochastic process algebras is classically defined by means of Continuous Time Markov Chains (CTMCs) a , r − − − → Q P rate of an exponentially distributed random variable 2 / 23

  3. Problems with a point-wise stochastic semantics Typically, process algebras are endowed with a structural equivalence relation ≡ equating processes with the same behaviour Example: modeling the parallel operator we expect no differences between Q | R , R | Q , and R | Q | 0 . 3 / 23

  4. Problems with a point-wise stochastic semantics Typically, process algebras are endowed with a structural equivalence relation ≡ equating processes with the same behaviour Example: modeling the parallel operator we expect no differences between Q | R , R | Q , and R | Q | 0 . a , r P − → Q | R 3 / 23

  5. Problems with a point-wise stochastic semantics Typically, process algebras are endowed with a structural equivalence relation ≡ equating processes with the same behaviour Example: modeling the parallel operator we expect no differences between Q | R , R | Q , and R | Q | 0 . a , r P − → Q | R a , r − → R | Q P 3 / 23

  6. Problems with a point-wise stochastic semantics Typically, process algebras are endowed with a structural equivalence relation ≡ equating processes with the same behaviour Example: modeling the parallel operator we expect no differences between Q | R , R | Q , and R | Q | 0 . a , r P − → Q | R a , r − → R | Q P a , r − → R | Q | 0 P 3 / 23

  7. Problems with a point-wise stochastic semantics Typically, process algebras are endowed with a structural equivalence relation ≡ equating processes with the same behaviour Example: modeling the parallel operator we expect no differences between Q | R , R | Q , and R | Q | 0 . a , r P − → Q | R by additivity a , r a , 3 r − → R | Q P P − − → { Q | R , R | Q , R | Q | 0 } a , r − → R | Q | 0 P 3 / 23

  8. A -Markov kernel [Mardare-Cardelli‘10] Mardare and Cardelli generalized the concept of CTMC to generic measurable spaces ( M , Σ): A -Markov kernel: ( M , Σ , θ ) θ : A → � M → ∆( M , Σ) � where measure action label on ( M , Σ) current state 4 / 23

  9. A -Markov kernel [Mardare-Cardelli‘10] Mardare and Cardelli generalized the concept of CTMC to generic measurable spaces ( M , Σ): A -Markov kernel: ( M , Σ , θ ) θ : A → � M → ∆( M , Σ) � where measure action label on ( M , Σ) current state θ ( α )( m ) is a measure on ( M , Σ) 4 / 23

  10. A -Markov kernel [Mardare-Cardelli‘10] Mardare and Cardelli generalized the concept of CTMC to generic measurable spaces ( M , Σ): A -Markov kernel: ( M , Σ , θ ) θ : A → � M → ∆( M , Σ) � where measure action label on ( M , Σ) current state θ ( α )( m ) is a measure on ( M , Σ) θ ( α )( m )( N ) ∈ R + is the rate of m α − → N 4 / 23

  11. Stochastic bisimulation [Mardare-Cardelli‘10] The definition of Markov kernel induces a new definition of stochastic bisimulation Stochastic bisimulation: A rate-bisimulation relation R ⊆ M × M is an equivalence relation such that for all α ∈ A and R -closed measurable sets C ∈ Σ. ( m , n ) ∈ R θ ( α )( m )( C ) = θ ( α )( n )( C ) iff 5 / 23

  12. Stochastic bisimulation [Mardare-Cardelli‘10] The definition of Markov kernel induces a new definition of stochastic bisimulation Stochastic bisimulation: A rate-bisimulation relation R ⊆ M × M is an equivalence relation such that for all α ∈ A and R -closed measurable sets C ∈ Σ. ( m , n ) ∈ R θ ( α )( m )( C ) = θ ( α )( n )( C ) iff we say m and n are stochastic bisimilar, written m ∼ ( M , Σ ,θ ) n , if they are related by a stochastic bisimulation. 5 / 23

  13. Outline of the construction Problem: the definition of a Markov kernel needs a structural presentation of the semantics (SOS). + Brane Calculus + SOS for Brane Calculus + Markov kernel for Brane Calculus 6 / 23

  14. (Finite state) Brane calculus [Cardelli ‘04] k | σ h P i | P m Q Systems P : P , Q ::= nests of membranes 0 | σ | τ | a .σ Membranes M : σ, τ ::= combinations of actions Actions: a , b ::= . . . (not now) σ | τ h P i σ h P i σ σ P P membrane membrane τ contents patches 7 / 23

  15. Brane Calculus Reactions Actions: . . . J n | J I n ( σ ) | K n | K I n | G ( σ ) phago J , exo K , pino G J I τ n ( ρ ) .τ J n .σ ρ σ Q Q τ ′ σ ′ τ ′ phago P σ ′ P K I n .τ σ τ K n .σ σ ′ Q Q τ ′ exo P σ ′ P τ ′ G ( ρ ) .τ τ P P σ pino σ ρ 8 / 23

  16. Reduction Semantics for Brane Calculus } ⊆ P × P Reduction relation (“reaction”): (red-phago) J I n ( ρ ) .τ | τ 0 h Q i m J n .σ | σ 0 h P i } τ | τ 0 h ρ h σ | σ 0 h P ii m Q i (red-exo) K I n .τ | τ 0 hK n .σ | σ 0 h P i m Q i } σ | σ 0 | τ | τ 0 h Q i m P (red-pino) G ( ρ ) .σ | σ 0 h P i } σ | σ 0 h ρ hki m P i P } Q P } Q (red-loc) (red-comp) σ h P i } σ h Q i P m R } Q m R P ′ } Q ′ Q ′ ≡ Q P ≡ P ′ (red-equiv) P } Q 9 / 23

  17. Reduction Semantics for Brane Calculus } ⊆ P × P Reduction relation (“reaction”): (red-phago) J I n ( ρ ) .τ | τ 0 h Q i m J n .σ | σ 0 h P i } τ | τ 0 h ρ h σ | σ 0 h P ii m Q i (red-exo) K I n .τ | τ 0 hK n .σ | σ 0 h P i m Q i } σ | σ 0 | τ | τ 0 h Q i m P (red-pino) G ( ρ ) .σ | σ 0 h P i } σ | σ 0 h ρ hki m P i P } Q P } Q (red-loc) (red-comp) σ h P i } σ h Q i P m R } Q m R P ′ } Q ′ Q ′ ≡ Q P ≡ P ′ (red-equiv) P } Q not structural 9 / 23

  18. Towards a Structural Operational Semantics We give a LTS for the Brane Calculus (along [Rathke-Sobocinski‘08]) Meta-syntax ∗∗ (typed λ -calculus) M ::= 0 | k | α. M | M | M | M m M | M h M i Terms X (variable) λ X : t . M (lambda abstraction) M ( M ) (application) α ::= J n | J I n ( M ) | K n | K I n | G n ( M ) t ::= sys | mem | act | t → t Types (**) It is not a language extension, λ -terms are introduced only for a structural definition of the LTS. 10 / 23

  19. Typing System for Brane Calculus Γ ⊢ M : t (Judgement) environment type Γ: Vars → Types term Γ( X ) = t (var) Γ ⊢ X : t Γ , X : t ⊢ M : t ′ Γ ⊢ M : t → t ′ Γ ⊢ N : t Γ ⊢ λ X : t . M : t → t ′ (lambda) (app) Γ ⊢ M ( N ) : t ′ 11 / 23

  20. Typing System for Brane Calculus Γ ⊢ M : t (Judgement) environment type Γ: Vars → Types term a ∈ { J n , K n , K I a ∈ { J I n , G n } n } Γ ⊢ M : mem (act) (act-arg) Γ ⊢ a : act Γ ⊢ a ( M ) : act 11 / 23

  21. Typing System for Brane Calculus Γ ⊢ M : t (Judgement) environment type Γ: Vars → Types term Γ 1 ⊢ α : act Γ 2 ⊢ M : mem (zero) ( α -pref) Γ ⊢ 0 : mem Γ 1 , Γ 2 ⊢ α. M : mem Γ 1 ⊢ M : mem Γ 2 ⊢ N : mem (par) Γ 1 , Γ 2 ⊢ M | N : mem union of environments supposed to be disjoint 11 / 23

  22. Typing System for Brane Calculus Γ ⊢ M : t (Judgement) environment type Γ: Vars → Types term Γ 1 ⊢ M : mem Γ 2 ⊢ N : sys (void) (loc) Γ ⊢ k : sys Γ 1 , Γ 2 ⊢ M h N i : sys Γ 1 ⊢ M : sys Γ 2 ⊢ N : sys (comp) Γ 1 , Γ 2 ⊢ M m N : sys union of environments supposed to be disjoint 11 / 23

  23. Labelled Transition System (membranes) Labels for mem-transitions: A mem = { J n , J I n ( ρ ) , K n , K I n , G n ( ρ ) } ( J I -pref) ( J -pref) J n .σ J n J I n ( ρ ) − → σ J I n ( ρ ) .σ − − − → σ ( K I -pref) ( K -pref) K n .σ K n K I K I − → σ n n .σ − → σ ( G -pref) G n ( ρ ) G n ( ρ ) .σ − − − → σ σ α σ α → σ ′ → σ ′ − − (L-par) → τ | σ ′ (R-par) α τ | σ α → σ ′ | τ σ | τ − − 12 / 23

  24. Labelled Transition System (systems) Labels for sys-transitions: A + sys = { phago n , phago n , exo n } ∪ { id } Phago fragment ∗∗ J I J n n ( ρ ) σ − → σ ′ σ − − − → σ ′ ( J I ) ( J ) phago n σ h P i → λ Z . Z ( σ ′ h P i ) phago n σ h P i → λ X . σ ′ h ρ h X i m P i − − − − − − − − phago n phago n − − − − → F − − − − → A P P (L mJ I ) (L mJ ) phago n P m Q → λ Z . ( F ( Z ) m Q ) phago n P m Q → λ X . ( A ( X ) m Q ) − − − − − − − − phago n phago n P − − − − → F Q − − − − → A (L-id J ) P m Q id − → F ( A ) (**) Right-symmetric rules are omitted example 13 / 23

  25. Labelled Transition System (systems) Labels for sys-transitions: A + sys = { phago n , phago n , exo n } ∪ { id } Phago fragment ∗∗ J I J n n ( ρ ) σ − → σ ′ σ − − − → σ ′ ( J I ) ( J ) phago n σ h P i → λ Z . Z ( σ ′ h P i ) phago n σ h P i → λ X . σ ′ h ρ h X i m P i − − − − − − − − phago n phago n P − − − − → F P − − − − → A (L mJ I ) (L mJ ) phago n P m Q → λ Z . ( F ( Z ) m Q ) phago n P m Q → λ X . ( A ( X ) m Q ) − − − − − − − − phago n phago n P − − − − → F Q − − − − → A has type has type (L-id J ) (sys → sys) → sys sys → sys P m Q id − → F ( A ) (**) Right-symmetric rules are omitted example 13 / 23

Recommend


More recommend