mean field heisenberg models and random permutations
play

Mean field Heisenberg models and random permutations Jakob E. Bj - PowerPoint PPT Presentation

Mean field Heisenberg models and random permutations Jakob E. Bj ornberg University of Gothenburg, Sweden Plan Heisenberg model probabilistic description results for complete graph Heisenberg model (ferromagnet) Finite graph G =


  1. Mean field Heisenberg models and random permutations Jakob E. Bj¨ ornberg University of Gothenburg, Sweden

  2. Plan ◮ Heisenberg model ◮ probabilistic description ◮ results for complete graph

  3. Heisenberg model (ferromagnet) Finite graph G = ( V , E ), for example [ − n , n ] d ⊆ Z d or K n

  4. Heisenberg model (ferromagnet) Finite graph G = ( V , E ), for example [ − n , n ] d ⊆ Z d or K n � H = − 2 S x · S y xy ∈ E

  5. Heisenberg model (ferromagnet) Finite graph G = ( V , E ), for example [ − n , n ] d ⊆ Z d or K n � H = − 2 S x · S y xy ∈ E where S x · S y = � 3 j =1 S j x S j y and � 0 � � 0 � � 1 � 1 − i 0 S 1 = 1 S 2 = 1 S 3 = 1 , , 2 2 2 1 0 0 0 − 1 i x = S j ⊗ Id V \{ x } S j

  6. Heisenberg model (ferromagnet) Finite graph G = ( V , E ), for example [ − n , n ] d ⊆ Z d or K n � H = − 2 S x · S y xy ∈ E where S x · S y = � 3 j =1 S j x S j y and � 0 � � 0 � � 1 � 1 − i 0 S 1 = 1 S 2 = 1 S 3 = 1 , , 2 2 2 1 0 0 0 − 1 i x = S j ⊗ Id V \{ x } S j Conjecture. On Z d with d ≥ 3 there is a phase transition.

  7. Heisenberg model (ferromagnet) Finite graph G = ( V , E ), for example [ − n , n ] d ⊆ Z d or K n � H = − 2 S x · S y xy ∈ E where S x · S y = � 3 j =1 S j x S j y and � 0 � � 0 � � 1 � 1 − i 0 S 1 = 1 S 2 = 1 S 3 = 1 , , 2 2 2 1 0 0 0 − 1 i x = S j ⊗ Id V \{ x } S j Conjecture. On Z d with d ≥ 3 there is a phase transition. Results: ◮ No phase-transition if d ≤ 2 (Mermin–Wagner) ◮ Phase-transition if G = K n ← this talk!

  8. Interchange process (Harris ’72) ◮ Labelled particles at the vertices x ∈ V

  9. Interchange process (Harris ’72) ◮ Labelled particles at the vertices x ∈ V ◮ Swap particles at x ∼ y at rate 1, independently

  10. Interchange process (Harris ’72) ◮ Labelled particles at the vertices x ∈ V ◮ Swap particles at x ∼ y at rate 1, independently G = { 1 , 2 , . . . , 10 } ⊆ Z : 2 3 9 10 1 ω = process of ‘crosses’ 1 2 3 4 5 6 7 8 9 10

  11. Interchange process (Harris ’72) ◮ Labelled particles at the vertices x ∈ V ◮ Swap particles at x ∼ y at rate 1, independently 1 G = { 1 , 2 , . . . , 10 } ⊆ Z : 2 3 9 10 1 ω = process of ‘crosses’ 1 2 3 4 5 6 7 8 9 10

  12. Interchange process (Harris ’72) ◮ Labelled particles at the vertices x ∈ V ◮ Swap particles at x ∼ y at rate 1, independently 3 1 G = { 1 , 2 , . . . , 10 } ⊆ Z : 2 3 9 10 1 ω = process of ‘crosses’ 1 2 3 4 5 6 7 8 9 10

  13. Interchange process (Harris ’72) ◮ Labelled particles at the vertices x ∈ V ◮ Swap particles at x ∼ y at rate 1, independently 3 1 2 G = { 1 , 2 , . . . , 10 } ⊆ Z : 2 3 9 10 1 ω = process of ‘crosses’ 1 2 3 4 5 6 7 8 9 10

  14. Interchange process (Harris ’72) ◮ Labelled particles at the vertices x ∈ V ◮ Swap particles at x ∼ y at rate 1, independently 3 4 1 7 5 2 6 9 10 8 G = { 1 , 2 , . . . , 10 } ⊆ Z : 2 3 9 10 1 ω = process of ‘crosses’ 1 2 3 4 5 6 7 8 9 10

  15. Interchange process (Harris ’72) ◮ Labelled particles at the vertices x ∈ V ◮ Swap particles at x ∼ y at rate 1, independently 3 4 1 7 5 2 6 9 10 8 G = { 1 , 2 , . . . , 10 } ⊆ Z : 2 3 9 10 1 ω = process of ‘crosses’ σ t ( ω ) = (1 , 3)(2 , 6 , 7 , 4)(5)(8 , 10 , 9) 1 2 3 4 5 6 7 8 9 10

  16. Coloured/weighted interchange process Bicolour particles uniformly at random:

  17. Coloured/weighted interchange process Bicolour particles uniformly at random: 1 2 3 4 5 6 7 8 9 10

  18. Coloured/weighted interchange process Bicolour particles uniformly at random: 1 2 3 4 5 6 7 8 9 10 M = { all cycles monochromatic }

  19. Coloured/weighted interchange process Bicolour particles uniformly at random: 1 2 3 4 5 6 7 8 9 10 M = { all cycles monochromatic } σ t ( ω ) = (1 , 3)(2 , 6 , 7 , 4)(5)(8 , 10 , 9) ⇒ M fails.

  20. Coloured/weighted interchange process Bicolour particles uniformly at random: 1 2 3 4 5 6 7 8 9 10 M = { all cycles monochromatic } σ t ( ω ) = (1 , 3)(2 , 6 , 7 , 4)(5)(8 , 10 , 9) ⇒ M holds.

  21. Coloured/weighted interchange process Condition on ω : � 2 ) | γ | � � = 2 −| V | E [2 ℓ ( ω ) ] 2( 1 P ( M ) = E cycles γ where ℓ ( ω ) = number of disjoint cycles.

  22. Coloured/weighted interchange process Condition on ω : � 2 ) | γ | � � = 2 −| V | E [2 ℓ ( ω ) ] 2( 1 P ( M ) = E cycles γ where ℓ ( ω ) = number of disjoint cycles. Event A depending only on σ : I A 2 ℓ ( ω ) ] P ( A | M ) = E [ 1 =: P 2 ( A ) . E [2 ℓ ( ω ) ]

  23. Interpretation as quantum spin system Colours = + , − x ∈ V C 2 Colouring ↔ basis vector ⊗ x ∈ V | σ x � of �

  24. Interpretation as quantum spin system Colours = + , − x ∈ V C 2 Colouring ↔ basis vector ⊗ x ∈ V | σ x � of � where | + � = ( 1 0 ) and |−� = ( 0 1 )

  25. Interpretation as quantum spin system Colours = + , − x ∈ V C 2 Colouring ↔ basis vector ⊗ x ∈ V | σ x � of � where | + � = ( 1 0 ) and |−� = ( 0 1 ) Can check: T xy := 2( S x · S y ) + 1 2 acts by T xy ⊗ z ∈ V | σ z � = ⊗ z ∈ V | σ τ ( z ) � τ = ( x , y ) transposition .

  26. Interpretation as quantum spin system Colours = + , − x ∈ V C 2 Colouring ↔ basis vector ⊗ x ∈ V | σ x � of � where | + � = ( 1 0 ) and |−� = ( 0 1 ) Can check: T xy := 2( S x · S y ) + 1 2 acts by T xy ⊗ z ∈ V | σ z � = ⊗ z ∈ V | σ τ ( z ) � τ = ( x , y ) transposition . Heisenberg Hamiltonian � H = − ( T xy − 1) xy ∈ E

  27. Matrix exponential Lemma � � � � ∗ � exp β � xy ∈ E ( T xy − 1) = E ( xy , t ) ∈ ω T xy .

  28. Matrix exponential Lemma � � � � ∗ � exp β � xy ∈ E ( T xy − 1) = E ( xy , t ) ∈ ω T xy . Proof. ∞ β k � k � � � � � = e − β | E | � exp β ( T xy − 1) T xy k ! xy ∈ E k =0 xy ∈ E

  29. Matrix exponential Lemma � � � � ∗ � exp β � xy ∈ E ( T xy − 1) = E ( xy , t ) ∈ ω T xy . Proof. ∞ β k � k � � � � � = e − β | E | � exp β ( T xy − 1) T xy k ! xy ∈ E k =0 xy ∈ E e − β β k e �� e k e ! � � � = T b k T b k − 1 · · · T b 1 k e ! k ! b ∈ E N e ∈ E k e = #copies of e in b .

  30. Matrix exponential Lemma � � � � ∗ � exp β � xy ∈ E ( T xy − 1) = E ( xy , t ) ∈ ω T xy . Proof. ∞ β k � k � � � � � = e − β | E | � exp β ( T xy − 1) T xy k ! xy ∈ E k =0 xy ∈ E e − β β k e �� e k e ! � � � = T b k T b k − 1 · · · T b 1 k e ! k ! b ∈ E N e ∈ E k e = #copies of e in b .

  31. Matrix exponential Lemma � � � � ∗ � exp β � xy ∈ E ( T xy − 1) = E ( xy , t ) ∈ ω T xy . Proof. ∞ β k � k � � � � � = e − β | E | � exp β ( T xy − 1) T xy k ! xy ∈ E k =0 xy ∈ E e − β β k e �� e k e ! � � � = T b k T b k − 1 · · · T b 1 k e ! k ! b ∈ E N e ∈ E k e = #copies of e in b . Configuration ω ↔ random product � ∗ ( xy , t ) ∈ ω T xy .

  32. Matrix exponential Lemma � � � � ∗ � exp β � xy ∈ E ( T xy − 1) = E ( xy , t ) ∈ ω T xy . Proof. ∞ β k � k � � � � � = e − β | E | � exp β ( T xy − 1) T xy k ! xy ∈ E k =0 xy ∈ E e − β β k e �� e k e ! � � � = T b k T b k − 1 · · · T b 1 k e ! k ! b ∈ E N e ∈ E k e = #copies of e in b . Configuration ω ↔ random product � ∗ ( xy , t ) ∈ ω T xy . β ↔ time

  33. T´ oth’s representation of Heisenberg ferromagnet ( σ, σ )-diagonal element: � 1 if M happens , �� ∗ T xy � � σ | | σ � = 0 otherwise.

  34. T´ oth’s representation of Heisenberg ferromagnet ( σ, σ )-diagonal element: � 1 if M happens , �� ∗ T xy � � σ | | σ � = 0 otherwise. e β � ( T xy − 1) � = E [2 ℓ ( ω ) ] = 2 | V | P ( M ) . � So tr

  35. T´ oth’s representation of Heisenberg ferromagnet ( σ, σ )-diagonal element: � 1 if M happens , �� ∗ T xy � � σ | | σ � = 0 otherwise. e β � ( T xy − 1) � = E [2 ℓ ( ω ) ] = 2 | V | P ( M ) . � So tr Theorem (T´ oth ’93) xy S x · S y and Z ( β ) = tr ( e − β H ) . Then the Let H = − 2 � correlation function S 3 x S 3 y e − β H � � y � = tr � S 3 x S 3 = 1 4 P 2 ( x ↔ y ) Z ( β )

  36. The Heisenberg ferromagnet γ 0 = cycle containing the origin Conjecture. Let G = [ − n , n ] d ⊆ Z d , d ≥ 3, and m ( β ) = lim k →∞ lim n →∞ P 2 ( | γ 0 | > k )

  37. The Heisenberg ferromagnet γ 0 = cycle containing the origin Conjecture. Let G = [ − n , n ] d ⊆ Z d , d ≥ 3, and m ( β ) = lim k →∞ lim n →∞ P 2 ( | γ 0 | > k ) Then there is β c s.t. � = 0 for β < β c , m ( β ) > 0 for β > β c .

  38. Higher spins Cycle-weighted interchange processes: I A θ ℓ ( ω ) ] P θ ( A ) = E [ 1 E [ θ ℓ ( ω ) ] , θ > 0

  39. Higher spins Cycle-weighted interchange processes: I A θ ℓ ( ω ) ] P θ ( A ) = E [ 1 E [ θ ℓ ( ω ) ] , θ > 0 Integer θ ↔ spin S = ( θ − 1) / 2

Recommend


More recommend