maximum matchings and minimum blocking sets in 6 graphs
play

Maximum Matchings and Minimum Blocking Sets in 6 -Graphs Philipp - PowerPoint PPT Presentation

Maximum Matchings and Minimum Blocking Sets in 6 -Graphs Philipp Kindermann Universit at W urzburg Therese Biedl Ahmad Biniaz Veronika Irvine Kshitij Jain Anna Lubiw Proximity Graphs P : set of n points in the plane Proximity


  1. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998

  2. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998 Max. Matching µ ( n )

  3. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998 µ ( n ) = ⌊ n Max. Matching µ ( n ) 2 ⌋

  4. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998 µ ( n ) = ⌊ n µ ( n ) = ⌊ n Max. Matching µ ( n ) 2 ⌋ 2 ⌋

  5. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998 µ ( n ) = ⌊ n µ ( n ) = ⌊ n Max. Matching µ ( n ) 2 ⌋ 2 ⌋ (even Hamil. path)

  6. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998 µ ( n ) = ⌈ n − 1 µ ( n ) = ⌊ n µ ( n ) = ⌊ n Max. Matching µ ( n ) 2 ⌋ 2 ⌋ 3 ⌉ (even Hamil. path)

  7. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998 µ ( n ) = ⌈ n − 1 µ ( n ) ≥ ⌈ n − 1 µ ( n ) = ⌊ n µ ( n ) = ⌊ n Max. Matching µ ( n ) 2 ⌋ 2 ⌋ 3 ⌉ 3 ⌉ (even Hamil. path)

  8. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998 µ ( n ) = ⌈ n − 1 µ ( n ) ≥ ⌈ n − 1 µ ( n ) = ⌊ n µ ( n ) = ⌊ n Max. Matching µ ( n ) 2 ⌋ 2 ⌋ 3 ⌉ 3 ⌉ (even µ ( n ) ≤ ⌊ n 2 ⌋ Hamil. path)

  9. Known Results G ◦ ( P ) G △ ( P ) G ▽ ( P ) G � ( P ) G � ( P ) Half- Θ 6 -Graphs Θ 6 -Graphs Delaunay L ∞ -Delaunay t = 2.61 t = 2 t = 2 Spanning Ratio t 1.593 < t < 1.998 µ ( n ) = ⌈ n − 1 µ ( n ) ≥ ⌈ n − 1 µ ( n ) = ⌊ n µ ( n ) = ⌊ n Max. Matching µ ( n ) 2 ⌋ 2 ⌋ 3 ⌉ 3 ⌉ (even µ ( n ) ≤ ⌊ n 2 ⌋ Hamil. path)

  10. The Tutte-Berge Formula G = ( V , E )

  11. The Tutte-Berge Formula G = ( V , E ) S ⊆ V

  12. The Tutte-Berge Formula G = ( V , E ) S ⊆ V

  13. The Tutte-Berge Formula G = ( V , E ) S ⊆ V

  14. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S )

  15. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S )

  16. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S )

  17. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching

  18. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching ⇔ odd ( S ) ≤ | S | for every S ⊆ V

  19. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching ⇔ odd ( S ) ≤ | S | for every S ⊆ V

  20. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching ⇔ odd ( S ) ≤ | S | for every S ⊆ V [Berge ’57]

  21. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching ⇔ odd ( S ) ≤ | S | for every S ⊆ V [Berge ’57] A maximum matching of G has size

  22. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching ⇔ odd ( S ) ≤ | S | for every S ⊆ V [Berge ’57] A maximum matching of G has size 1 2 ( | V | − max S ⊆ V ( odd ( G \ S ) − | S | ))

  23. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching ⇔ odd ( S ) ≤ | S | for every S ⊆ V [Berge ’57] A maximum matching of G has size 1 2 ( | V | − max S ⊆ V ( odd ( G \ S ) − | S | ))

  24. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching ⇔ odd ( S ) ≤ | S | for every S ⊆ V [Berge ’57] A maximum matching of G has size 1 2 ( | V | − max S ⊆ V ( odd ( G \ S ) − | S | ))

  25. The Tutte-Berge Formula G = ( V , E ) S ⊆ V comp ( G \ S ) odd ( G \ S ) [Tutte ’47] G has a (near-)perfect matching ⇔ odd ( S ) ≤ | S | for every S ⊆ V [Berge ’57] A maximum matching of G has size 1 2 ( | V | − max S ⊆ V ( odd ( G \ S ) − | S | )) ⇒ there are max S ⊆ V ( odd ( G \ S ) − | S | ) unmatched vtcs

  26. Upper Bound on Maximum Matching degree of a face

  27. Upper Bound on Maximum Matching degree of a face d = 3

  28. Upper Bound on Maximum Matching degree of a face d = 3

  29. Upper Bound on Maximum Matching degree of a face d = 3

  30. Upper Bound on Maximum Matching degree of a face d = 3 d = 6

  31. Upper Bound on Maximum Matching degree of a face d = 3 d = 6

  32. Upper Bound on Maximum Matching degree of a face d = 3 d = 6

  33. Upper Bound on Maximum Matching degree of a face d = 3 d = 6 d = 11

  34. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 degree of a face d = 3 d = 6 d = 11

  35. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face d = 3 d = 6 d = 11

  36. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face d = 3 d = 6 d = 11

  37. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face d = 3 d = 6 d = 11

  38. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face d = 3 d = 6 d = 11

  39. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face d = 3 d = 6 d = 11

  40. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face A d = 3 d = 6 d = 11

  41. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face A d = 3 d = 6 d = 11

  42. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face A d = 3 d = 6 d = 11

  43. Upper Bound on Maximum Matching ∑ d ≥ 3 ( d − 2 ) | F | △ deg d ≤ 2 n − 4 G △ degree of a face A G △ A d = 3 d = 6 d = 11

Recommend


More recommend