lower bounds for reachability in vass in fixed dimension
play

Lower bounds for reachability in VASS in fixed dimension Wojciech - PowerPoint PPT Presentation

Lower bounds for reachability in VASS in fixed dimension Wojciech Czerwi ski Jerome Leroux S awomir Lasota University of Bordeaux University of Warsaw Agata Dubiak Ranko Lazic Filip Mazowiecki ukasz Orlikowski University of Warsaw


  1. Lower bounds for reachability in VASS in fixed dimension Wojciech Czerwi ń ski Jerome Leroux S ł awomir Lasota University of Bordeaux University of Warsaw Agata Dubiak Ranko Lazic Filip Mazowiecki Ł ukasz Orlikowski University of Warsaw MPI Saarbruecken University of Warwick Infinity’20, online, 2020-07-07 1

  2. Plan 1. Vector addition systems with states ( VASS ) and the reachability problem 2. Lower bounds in small fixed dimensions 3. Lower bounds in large fixed dimensions 2

  3. Many faces of vector addition systems with states = • vector addition systems with states VASS • counter programs without 0-tests : [Hopcroft, Pansiot ’79] : • Petri nets [Petri 1962] : x y • VAS [Karp, Miller ’69] • multiset rewriting p q • … z 3

  4. Counter programs without zero tests counters are nonnegative integer variables initially all equal zero a sequence of commands of the form: abort if x < n except for the very last command which is of the form: otherwise abort Example: initially: x’ = x = y = 0 no zero tests finally: x' = 0 x = 100 y = 200 4

  5. Loop programs 5

  6. Minsky machines the conditional jump of Minsky machines is simulated by counter program with zero tests : 6

  7. Reachability (and coverability) Reachability problem : given a counter program without zero tests configuration reachability can it terminate (execute its halt command)? Coverability problem: given a counter program without zero tests with trivial halt command control-location reachability can it terminate (reach its halt command)? 7

  8. Complexity of reachability (and coverability) … 2 } 2 2 O (n) 2 Time/space needed is at least F 3 (n) = coverability reachability Tower [Czerwi ń ski, L., Lazic, Leroux, Mazowiecki ’19] EXPSPACE lower see Jerome Leroux’s EXPSPACE bound invited talk on Thursday [Lipton ’76] [Lipton ’76] Ackermann [Leroux, Schmitz ’15, ’19] decidable EXPSPACE upper [Sacerdote, Tenney ‘77] [Mayr ’81] bound [Rackoff ’78] [Kosaraju ’82] [Lambert ’92] [Leroux ’09] Time/space needed is at most F 𝜕 (n) 8

  9. 2. Lower bounds for reachability in small fixed dimensions dimension = number of counters: 9

  10. Reachability in dimension 1 and 2 encoding of integers unary binary NP * NL * dimension 1 [Haase, Kreutzer, Ouaknine, [Valiant, Peterson ’75] Worrell ’09] PSPACE * NL * dimension 2 [Blondin, Finkel, Goeller, [Englert, Lazic, Totzke ’16] Haase, McKenzie ’15] * complete shortest run has shortest run has polynomial length exponential length effectively flattable in dimension 2 Upper bounds similar to dimension 2 for every fixed dimension? …at least for flat counter programs? 10

  11. Flat = no nested loops 11

  12. Shortest runs in small dimensions [Czerwi ń ski, L., Lazic, Leroux, Mazowiecki ’20] unary flat unary binary poly * poly * exp * dim 1 poly * poly * exp * dim 2 ? exp * exp * dim 3 2-exp * dim 4 dim 5 … * upper bound * lower bound Key ingredient: computing exactly large numbers 12

  13. Exponential shortest run in unary flat dim 3 objective: halts iff y divisible by x <= y halts iff x = (n+1) ・ y iff all multiplications exact iff all inner loops iterated maximally iff (n+1) ・ y divisible by 1, 2, …, n program size O (n 2 ), shortest run 2 O (nc) 13

  14. Complexity lower bounds for reachability What about coverability? [Czerwi ń ski, L., Lazic, Leroux, Mazowiecki ’19, ’20] [Dubiak ’20] unary flat unary binary NL * NL * NP * dim 1 NL NL PSPACE NL * NL * PSPACE * dim 2 NL NL PSPACE dim 3 ? ? NL NL PSPACE dim 4 NL NL PSPACE NP * dim 5 also for binary flat NL NL PSPACE NP * … NL NL PSPACE NP * PSPACE * EXPSPACE * dim 13 NL NL PSPACE NP * EXPSPACE * 2-EXPSPACE * dim 14 NL NL PSPACE NP * 2-EXPSPACE * 3-EXPSPACE * dim 15 NL NL PSPACE … … … … * complete * hard 14

  15. 3. Lower bounds for reachability in large fixed dimensions 15

  16. Parametric lower bound for reachability [Czerwi ń ski, L., Lazic, Leroux, Mazowiecki ’19] [Czerwi ń ski, L., Orlikowski ’??] unary flat unary binary dim 13 PSPACE * dim 14 EXPSPACE * dim 15 2-EXPSPACE * … … Minsky machine M of size n … n } with counters bounded by 2 O (n+h) Counter program of size O (n+h) 2 h+1 2 with O (h) = h+13 counters O ( n + l o g h ) i m p r o v e d r e d u Counter program of size O (n+log h) c t i o n with O (log h) counters 16

  17. Parametric lower bound for reachability [Czerwi ń ski, L., Lazic, Leroux, Mazowiecki ’19] [Czerwi ń ski, L., Orlikowski ’??] unary flat unary binary dim 13 PSPACE * dim 14 EXPSPACE * dim 15 2-EXPSPACE * … … … n } 2 2 O (d) d-13 counters needs space at least 2 Reachability problem for programs of size n with d … n } 2 2 2 (d-13)/3 2 O (d) 2 improved lower bound: 17

  18. Exponential amplifier x → x’ : starting with x>0 and x’ = 0, computes x’ exponentially larger than x (if x = 0 at the end) if so, also all other counters are forcedly 0 at the end 18

  19. Composing exponential amplifiers unary flat unary binary dim 13 PSPACE * dim 14 EXPSPACE * dim 15 2-EXPSPACE * x0 { … … → x0 } x0 → x1 relay-race x2 { x1 x1 → x2 } x2 → x3 x3 M simulate M using x3 halt if x0, x1, x2, x3 = 0 19

  20. x0 { Relay-race } objective: decrease the number of counters to logarithmic x2 { x1 } x4 { x3 } x6 { x5 } x7 halt if x0, x1, x2, x3, x4, x5, x5, x7 = 0 20

  21. x0 { Counter recycling? } x2 { x0 = 0 x1 x0 } x4 { x3 } x6 { x5 } x7 halt if x0, x1, x2, x3, x4, x5, x5, x7 = 0 21

  22. x0 { Counter recycling? } x0 { x1 x0 = 0 } x1 = 0 x0 { x1 x0 = 0 x1 = 0 } x0 { x0 = 0 x1 x1 = 0 x0 = 0 } 22

  23. y0 { x0 { Supervisors } x0 + x1 = } x2 { x1 } y1 = x2 + x3 y2 { x4 { x3 } x4 + x5 = } x6 { x5 } = x6 + x7 y3 x7 halt if x0, x1, x2, x3, x4, x5, x5, x7, y0, y1, y2, y3, … = 0 23

  24. y0 { x0 { Supervisors } x0 + x1 = } x2 { x1 } y1 = x2 + x0 y2 { x1 { x0 } x1 + x2 = } x0 { x2 } = x0 + x1 y3 x1 halt if x0, x1, x2, y0, y1, y2, y3, … = 0 24

  25. z0 { y0 { Supersupervisors x0 { } } x2 { x1 } y1 } y2 { x1 { x0 } } x0 { x2 z1 } y0 x1 halt if x0, x1, x2, and so on… y0, y1, y2, z0, z1, … = 0 25

  26. Summary unary flat unary binary unary flat unary binary dim 1 poly * poly * exp * NL * NL * NP * dim 1 dim 2 poly * poly * exp * ? NL * NL * PSPACE * exp * exp * dim 2 dim 3 ? dim 3 dim 4 2-exp * ? dim 4 dim 5 dim 5 NP * … * upper bound … NP * * lower bound dim 13 NP * PSPACE * EXPSPACE * I recruit for a dim 14 NP * EXPSPACE * 2-EXPSPACE * fully-funded dim 15 NP * 2-EXPSPACE * 3-EXPSPACE * PhD position in … … … … the NCN grant * complete … n } * hard 2 2 2 O (d) 2 Reachability problem for d- thank you! dimensional VASS of size n requires space at least 26

Recommend


More recommend