low rank tensor approximation of multivariate functions
play

Low-Rank Tensor Approximation of Multivariate Functions for Quantum - PowerPoint PPT Presentation

Low-Rank Tensor Approximation of Multivariate Functions for Quantum Chemistry Applications Prashant Rai Sandia National Laboratories, Livermore, CA Joint work with : M. Hermes, S. Hirata (UIUC) K. Sargsyan, H. Najm (Sandia) Dec 3, 2016


  1. Low-Rank Tensor Approximation of Multivariate Functions for Quantum Chemistry Applications Prashant Rai Sandia National Laboratories, Livermore, CA Joint work with : M. Hermes, S. Hirata (UIUC) K. Sargsyan, H. Najm (Sandia) Dec 3, 2016 BASCD, Stanford

  2. High Dimensional Integrals are Difficult! What we want? � I ( u ) = u ( x ) d x Ω x = ( x 1 , . . . , x m ); m = 10 , 100 , 1000 . . . Find I ( u ) by sampling the u ( x ) at random/well chosen points Why is it difficult? The amount of information (or samples) needed to integrate a high dimensional function increases exponentially with dimension Is there a way? Monte Carlo • Sample the function at a large number of (quasi) random points • Compute average as I ( u ) • Convergence rate independent of dimension � • Dependence on variance of the function � 2 / 21

  3. High Dimensional Integrals are Difficult! What we want? � I ( u ) = u ( x ) d x Ω x = ( x 1 , . . . , x m ); m = 10 , 100 , 1000 . . . Find I ( u ) by sampling the u ( x ) at random/well chosen points Why is it difficult? The amount of information (or samples) needed to integrate a high dimensional function increases exponentially with dimension Is there a way? Monte Carlo • Sample the function at a large number of (quasi) random points • Compute average as I ( u ) • Convergence rate independent of dimension � • Dependence on variance of the function � 2 / 21

  4. High Dimensional Integrals are Difficult! What we want? � I ( u ) = u ( x ) d x Ω x = ( x 1 , . . . , x m ); m = 10 , 100 , 1000 . . . Find I ( u ) by sampling the u ( x ) at random/well chosen points Why is it difficult? The amount of information (or samples) needed to integrate a high dimensional function increases exponentially with dimension Is there a way? Monte Carlo • Sample the function at a large number of (quasi) random points • Compute average as I ( u ) • Convergence rate independent of dimension � • Dependence on variance of the function � 2 / 21

  5. Key Idea: Separated Integration Integration Problem � I ( u ) = u ( x ) ρ ( x ) d x • u ( x ) = u ( x 1 , . . . , x m ) Ω • ρ ( x ) = ρ ( x 1 ) · · · ρ ( x m ) Low rank approximation of u ( x ) r � v ( 1 ) µ ( x 1 ) · · · v ( m ) u ( x ) ≈ v ( x 1 , . . . , x m ) = µ ( x m ) µ = 1 Separated Integration r �� � � � v ( 1 ) v ( m ) I ( u ) ≈ I ( v ) = µ ( x 1 ) ρ ( x 1 ) dx 1 · · · µ ( x m ) ρ ( x m ) dx m Ω 1 Ω m µ = 1 How to construct a low rank approximation of u ( x ) ? 3 / 21

  6. Functional Representation Linear Approximation n � • u j ∈ R are coefficients u ( x ) ≈ u j φ j ( x ) j = 1 • φ j ( x ) are basis functions How should we choose basis set? • Simplicity: polynomial, trigonometric functions • Low Cardinality: small n Problem In high dimensions, both are competing objectives ! 4 / 21

  7. Curse of dimensionality in approximation Approximation of a bivariate function u ( x , y ) n n � � u j 1 j 2 φ ( 1 ) j 1 ( x ) φ ( 2 ) u ( x , y ) ≈ j 2 ( y ) j 1 = 1 j 2 = 1 Y 3 y 2 y 3 y 3 3 3 x y x x 2 y 2 y 3 y xy 2 x 2 x 2 y 2 y 3 y xy x x X 3 1 x 2 x x Approximation of a m -variate function u ( x 1 , . . . , x m ) n n � � u j 1 ··· j m φ ( 1 ) j 1 ( x 1 ) · · · φ ( m ) u ( x 1 , . . . , x m ) ≈ · · · j m ( x m ) j 1 = 1 j m = 1 5 / 21

  8. In Search of Low Rank Structures Low rank structure from Singular Value Decomposition ( 2 ) ( 2 ) v 2 v 1 ≈ U ( 1 ) ( 1 ) v 2 v 1 Separated representation of a function ( m = 2 ) u ( x , y ) ≈ v ( 1 ) 1 ( x ) v ( 2 ) 1 ( y ) + v ( 1 ) 2 ( x ) v ( 2 ) 2 ( y ) + · · · 6 / 21

  9. Example v ( 1 ) 1 ( x ) v ( 2 ) 1 ( y ) u ( x , y ) v ( 1 ) 2 ( x ) v ( 2 ) 2 ( y ) 7 / 21

  10. Canonical Tensor Format Generalization of SVD for m = 3 ( 3 ) v 1 ( 3 ) v r ( 2 ) v 1 ( 2 ) v r ⨂ ⋯ ⨂ ≈ U ( 1 ) v 1 ( 1 ) v r Representation of a function in canonical format r n � � v ( i ) µ, j φ ( i ) v ( 1 ) µ ( x 1 ) · · · v ( m ) µ ( x m ); v ( i ) u ( x ) ≈ v ( x 1 , . . . , x m ) = µ ( x i ) = j ( x i ) µ = 1 j = 1 8 / 21

  11. Least-Squares Approximation Functional representation • Φ ∈ R S × n , Φ si = φ i ( x s ) : Measurement n � u ( x ) = v i φ i ( x ) matrix i = 1 • v ∈ R n : Coefficient vector u = Φ v • u ∈ R S , u s = u ( x s ) : Vector of function evaluations Optimization Problem v ∈ R n � u − Φ v � 2 ˆ v = min 2 ( Φ − 1 Φ )ˆ v = Φ − 1 u 9 / 21

  12. ALS in rank one format • Consider a rank one approximation of a 3- d function u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 2 ) ( x 2 ) v ( 3 ) ( x 3 ) • ALS � � n � j = 1 v ( 1 ) φ ( 1 ) � ALS in dimension 1: u ( x ) ≈ v ( 2 ) ( x 2 ) v ( 3 ) ( x 3 ) ( x 1 ) j j � � n � j = 1 v ( 2 ) φ ( 2 ) � ALS in dimension 2: u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 3 ) ( x 3 ) ( x 2 ) j j � � n � j = 1 v ( 3 ) φ ( 3 ) � ALS in dimension 3: u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 2 ) ( x 2 ) ( x 3 ) j j ( 3 ) v 1 ( 2 ) v 1 ⨂ ≈ U ( 1 ) v 1 10 / 21

  13. ALS in rank one format • Consider a rank one approximation of a 3- d function u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 2 ) ( x 2 ) v ( 3 ) ( x 3 ) • ALS � � n � j = 1 v ( 1 ) φ ( 1 ) � ALS in dimension 1: u ( x ) ≈ v ( 2 ) ( x 2 ) v ( 3 ) ( x 3 ) ( x 1 ) j j � � n � j = 1 v ( 2 ) φ ( 2 ) � ALS in dimension 2: u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 3 ) ( x 3 ) ( x 2 ) j j � � n � j = 1 v ( 3 ) φ ( 3 ) � ALS in dimension 3: u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 2 ) ( x 2 ) ( x 3 ) j j ( 3 ) v 1 ( 2 ) v 1 ⨂ ≈ U ( 1 ) v 1 10 / 21

  14. ALS in rank one format • Consider a rank one approximation of a 3- d function u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 2 ) ( x 2 ) v ( 3 ) ( x 3 ) • ALS � � n � j = 1 v ( 1 ) φ ( 1 ) � ALS in dimension 1: u ( x ) ≈ v ( 2 ) ( x 2 ) v ( 3 ) ( x 3 ) ( x 1 ) j j � � n � j = 1 v ( 2 ) φ ( 2 ) � ALS in dimension 2: u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 3 ) ( x 3 ) ( x 2 ) j j � � n � j = 1 v ( 3 ) φ ( 3 ) � ALS in dimension 3: u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 2 ) ( x 2 ) ( x 3 ) j j ( 3 ) v 1 ( 2 ) v 1 ⨂ ≈ U ( 1 ) v 1 10 / 21

  15. ALS in rank one format • Consider a rank one approximation of a 3- d function u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 2 ) ( x 2 ) v ( 3 ) ( x 3 ) • ALS � � n � j = 1 v ( 1 ) φ ( 1 ) � ALS in dimension 1: u ( x ) ≈ v ( 2 ) ( x 2 ) v ( 3 ) ( x 3 ) ( x 1 ) j j � � n � j = 1 v ( 2 ) φ ( 2 ) � ALS in dimension 2: u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 3 ) ( x 3 ) ( x 2 ) j j � � n � j = 1 v ( 3 ) φ ( 3 ) � ALS in dimension 3: u ( x ) ≈ v ( 1 ) ( x 1 ) v ( 2 ) ( x 2 ) ( x 3 ) j j ( 3 ) v 1 ( 3 ) v 2 ( 2 ) ( 2 ) v 1 v 2 ⨂ ⨂ ≈ U ( 1 ) ( 1 ) v 1 v 2 10 / 21

  16. Quantum Chemistry Application • Accurate prediction of vibrational spectra of molecules using perturbation theory require � Anharmonic approximation of potential energy surface � First and second order corrections to energy � First and second order corrections to frequencies per d.o.f • Energy and frequency corrections are formulated as non singular integrals which can be high order and multi-centered Objective improve integration efficiency and scalability 11 / 21

  17. First Order Corrections � I 1 = Φ 0 ( x )∆ V ( x )Φ 0 ( x ) λ 1 ( x ) d x m ∆ V ( x ) = V ( x ) − V ref − 1 � ω 2 i x 2 i 2 i = 1 • V ( x ) : Potential energy (PE) containing up to n -th order force constants. As a default scenario, n = 4. • V ref : the minimum/reference PE, i.e. at the equilibrium geometry. • ω i : the i -th mode frequency of a reference mean-field theory. Found by solving Dyson equation. m − ω i x 2 h n i ( √ ω i x i ) � i Φ 0 ( x ) = η 0 ( x i ); η n i ( x i ) = C ( n i , ω i ) e 2 i = 1 • m : vibrational degrees of freedom. For H 2 O (water), m = 3 and H 2 CO (formaldehyde), m=6. • η n i ( x i ) : the harmonic-oscillator wave function with quantum number n i along the i -th normal mode x i . • h n i : Hermite polynomial of degree n i 12 / 21

  18. First Order Corrections (contd..) � I 1 = Φ 0 ( x )∆ V ( x )Φ 0 ( x ) λ 1 ( x ) d x λ 1 ( x ) = � m i = 1 λ ( i ) 1 ( x i ) I 1 λ ( i ) Energy ( E 1 ) 1 ( x i ) = 1 , 1 ≤ i ≤ m 1 ( x i ) = 2 1 / 2 η 2 ( x i ) Frequencies ( Σ ( i ) λ ( i ) , λ ( j ) 1 ) 1 = 1 ; j � = i η 0 ( x i ) First order correction integrands can be reformulated as Gaussian times polynomials � I 1 = x e ( x ) P 1 ( x ) d x m � e − ω i x 2 i , e ( x ) = i = 1 m � λ ( i ) P 1 ( x ) = ∆ V ( x ) 1 ( x i ) i = 1 13 / 21

  19. Second Order Corrections � � x ′ Φ 0 ( x )∆ V ( x ) G 2 ( x , x ′ )∆ V ( x ′ )Φ 0 ( x ′ ) λ 2 ( x , x ′ ) d x d x ′ I 2 = x using real-space Green’s function G 2 ( x , x ′ ) = e ( x , x ′ ) H ( x , x ′ ) � �� � � �� � Gaussian High rank polynomial on Hermite basis m � i ) = e − ω i 2 ( x 2 i + x ′ 2 e ( x , x ′ ) = e ( i ) ( x i , x ′ i ); e ( i ) ( x i , x ′ i ) i = 1 n max n max � m m i = 1 C 2 ( n i , ω i ) h n i ( √ ω i x i ) h n i ( √ ω i x ′ � � � H ( x , x ′ ) = · · · i ) − � m i = 1 n i ω i n 1 = 1 n m = 1 i = 1 14 / 21

Recommend


More recommend