low energy new physics
play

Low Energy New Physics Hye-Sung Lee (William and Mary / Jefferson - PowerPoint PPT Presentation

Low Energy New Physics Hye-Sung Lee (William and Mary / Jefferson Lab) Workshop on Hadron Physics in China and Opportunities in US Huangshan, Anhui, China July 2013 Low Energy New Physics (with an example of Dark Force) Hye-Sung Lee


  1. Low Energy New Physics Hye-Sung Lee (William and Mary / Jefferson Lab) Workshop on Hadron Physics in China and Opportunities in US Huangshan, Anhui, China July 2013

  2. Low Energy New Physics (with an example of “Dark Force”) Hye-Sung Lee (William and Mary / Jefferson Lab) Workshop on Hadron Physics in China and Opportunities in US Huangshan, Anhui, China July 2013

  3. Prelude

  4. We live in a Dark World

  5. We live in a Dark World Galaxy rotation curve Gravitational lensing Accelerating Universe (Supernovae) Cosmic Microwave Background

  6. We live in a Dark World still mystery 511 keV gamma-ray Positron excess

  7. We live in a Dark World “Dark Force” (Force among Dark Matters) 511 keV gamma-ray Positron excess

  8. Dark Force (Force among Dark Matters) Z’ - New gauge boson of O(1) GeV scale (cf. Proton: 1 GeV) - Extremely weak couplings to the SM particles (Dark Force carrier) dark matter halo e + DM Z ′ galaxy e − DM e + Z ′ DM e − e + Z ′ DM e − Dark Matter annihilations at Galactic center with Dark Force can address astrophysical anomalies. (511 keV gamma-ray [Fayet (2004), ...], Positron excess [Arkani-Hamed, et al (2008), ...])

  9. Dark Trilogy (of Dark World) 1. Dark Energy (Accelerating expansion, CMB, ...) 2. Dark Matter (Galaxy rotation curves, Gravitational lensing, ...) 3. Dark Force (511 keV gamma-ray, Positron excess, ...) Focus of this talk

  10. Dark Force searches in the Labs Many searches for Dark Force in the Labs around the world (ongoing/proposed). VEPP (Russia) Mainz (Germany) JLab (USA) BES (China) KEK (Japan) SLAC (USA) INFN (Italy) Particularly interesting: One of the New physics scenarios that can be tested with Low-energy experimental facilities ( Nuclear/Hadronic physics labs). [Dark force carrier Z’ scale (GeV) ≈ 1/1000 × Most new physics scale (TeV)] “various Low-E Labs” “LHC”

  11. Hunting for New fundamental force Fundamental forces (interactions) known to us: (1) Gravity [I. Newton, ... in 17C] (2) Electromagnetic force [J. Maxwell, ... in 19C] (3) Weak nuclear force [E. Fermi, ... in 20C] (4) Strong nuclear force [M. Gell-Mann, ... in 20C] Each and every fundamental force made huge impact in understanding physical world. Discovery of another fundamental force will do the same.

  12. Outline - Dark Force Models - Dark Force Searches (Dark Photon) - Additional Dark Force Searches (Dark Z) - High-energy experiments

  13. Dark Force Models

  14. Standard Model + Dark Force Gauge symmetry = SU(3) C x SU(2) L x U(1) Y x U(1) dark It may interact with DM, but SM particles have zero charges SM Z’ (no direct coupling) SM Z’ can couple to SM particles through kinetic mixing of U(1) Y & U(1) dark . [Holdom (1986)] ε L kin = − 1 4 B µ ν B µ ν + 1 B µ ν Z 0 µ ν − 1 µ ν Z 0 µ ν 4 Z 0 cos θ W 2 SM SM Z’ X (couples through SM gauge bosons) SM (mixing) B µ = cos θ W A µ − sin θ W Z µ

  15. f f Types of Dark Force ε Z ε × × Z ′ Z ′ γ Z ¯ ¯ f f Z’ : couplings to the SM particles are suppressed by small mixing. (model-dependent) [Arkani-Hamed, et al (2008); and many others] Popular Model: Dark Photon coupling = ε× (Photon coupling) [Davoudiasl, Lee, Marciano (2012)] New Model: Dark Z coupling = ε× (Photon coupling) + ε Z × (Z coupling) inherits properties of Z boson like parity violation. (different couplings for left/right-handed particles)

  16. Higgs structure matters Model-dependence comes from how the Z’ gets the mass (i.e. Higgs sector). - Dark Photon: (ex) additional Higgs singlet gives mass to Z’ - Dark Z: (ex) additional Higgs doublet gives mass to Z’ (Ex) Dark Photon case: Z-Z’ kinetic mixing is cancelled by Z-Z’ mass mixing (which is “induced by kinetic mixing”) at Leading order. em A µ − ( g/ cos θ W ) J µ L int ∼ − eJ µ NC Z µ µ ] − ( g/ cos θ W ) J µ → − eJ µ em [ A µ + ε Z 0 NC [ Z µ + O ( ε ) Z 0 µ ] (Kinetic mixing diagonalization) µ ] − ( g/ cos θ W ) J µ → − eJ µ (Z-Z’ mass matrix diagonalization) em [ A µ + ε Z 0 NC Z µ depends on Higgs sector for Higgs singlet ✓ 1 ◆ ✓ 1 ◆ 2 T 3 f − Q f sin 2 θ W J NC ¯ ¯ = f γ µ f − 2 T 3 f f γ µ γ 5 f µ Dark Force couplings depend on Higgs sector.

  17. Effects of New Model (Dark Z) Parameter space is extended from 2D to 3D. (Dark Photon) (Dark Z) ε ε Z’ mass Z’ mass ε Z (Z-Z’ mixing) em + ε Z ( g/ cos θ W ) J µ L int = − [ ε eJ µ em Z 0 NC ] Z 0 L int = − ε eJ µ µ µ Dark Photon = a special case of Dark Z ( ε Z = 0 limit). Some experiments irrelevant to Dark Photon searches become relevant to Dark Z searches (Low-E parity test, ... : will be discussed later). em A µ − ( g/ cos θ W ) J µ L int (SM) = − eJ µ NC Z µ

  18. Dark Force Searches : relevant to Dark Photon

  19. Dark Photon Searches 10 � 4 KLOE2012 SINDRUM BaBar a e a Μ γ 10 � 5 COSY explained a Μ 10 � 6 E774 APEX Test MAMI ε 2 = α ’/ α µ µ Z ′ 10 � 7 (magnetic moment) = − gµ B S � 2 ~ E141 Green band: explains 3.6 σ deviation in g µ - 2 10 � 8 (possibly early hint of Dark Force) [Fayet (2007); Pospelov (2008)] 10 � 9 Current and Future coverage (parts). 10 � 10 Orsay [Plots from R. McKeown’s talk (2011) 5 10 50 100 500 1000 + subsequent updates] m Z’ (MeV) m Zd � MeV � 1. Anomalous magnetic moment (g-2) for e, µ. 2. Beam-dump experiments (E137, E141 at SLAC; E774 at Fermilab) 3. Meson decays: Υ (bb) ➞ ɣ Z’ (BaBar); ! (ss) ➞ η Z’ (KLOE); π (dd) ➞ ɣ Z’ (COSY) 4. Fixed target experiments: New experiments designed for direct Dark Photon search (APEX, HPS, DarkLight, MAMI, VEPP3)

  20. Dark Photon Searches 10 � 4 KLOE2012 SINDRUM BaBar a e a Μ γ 10 � 5 COSY explained a Μ 10 � 6 E774 APEX Test MAMI ε 2 = α ’/ α µ µ Z ′ DarkLight 10 � 7 APEX (magnetic moment) = − gµ B S � 2 VEPP3 ~ E141 Green band: explains 3.6 σ deviation in g µ - 2 HPS 10 � 8 (possibly early hint of Dark Force) [Fayet (2007); Pospelov (2008)] 10 � 9 Current and Future coverage (parts). 10 � 10 Orsay [Plots from R. McKeown’s talk (2011) 5 10 50 100 500 1000 + subsequent updates] m Z’ (MeV) m Zd � MeV � 1. Anomalous magnetic moment (g-2) for e, µ. 2. Beam-dump experiments (E137, E141 at SLAC; E774 at Fermilab) 3. Meson decays: Υ (bb) ➞ ɣ Z’ (BaBar); ! (ss) ➞ η Z’ (KLOE); π (dd) ➞ ɣ Z’ (COSY) 4. Fixed target experiments: New experiments designed for direct Dark Photon search (APEX, HPS, DarkLight, MAMI, VEPP3)

  21. Dark Force searches at Jefferson Lab Nuclear/Hadronic Physics Lab Free Electron Laser FEL: DarkLight 3 Direct bump searches Continuous Electron Beam Text A B C Dark Photon Bremsstrahlung Hall A: APEX Hall B: HPS Z ’ e “Dark Photon” searches (3 fixed target experiments) fixed target

  22. Example: A’ Experiment (APEX) at JLab - Hall A [APEX Collaboration] Dark Photon 10 8 Bremsstrahlung SM bkg 10 7 Events êH 1 MeV L 10 6 10 5 5 s 10 4 2 s 1000 Dark Photon 100 180 200 220 240 260 signal e + e - mass H MeV L New Fixed target (Tantalium Z=73) experiment designed for direct Dark Photon production/detection. (Z’ ➞ e + e - narrow resonance search using HRS) 100 200 300 400 500 -4 10 -4 10 -5 -5 10 10 BaBar � '/ KLOE � MAMI a � -6 -6 10 10 APEX Test [APEX test-run result (2011)] -7 -7 10 10 0.1 0.2 0.3 0.4 0.5 100 200 200 300 400 400 500 [ MeV ] m A'

  23. Additional Dark Force Searches : relevant to Dark Z

  24. Dark Z effects on Neutral Current phenomenology [Davoudiasl, Lee, Marciano (2012)] Dark Z effect comes as modification of eff Lagrangian of Neutral Current scattering. L e ff = − 4 G F NC (sin 2 θ W ) J NC (sin 2 θ W ) 2 J µ √ µ ✓ ◆ 1 1 + δ 2 G F → G F 1 + Q 2 /m 2 Z 0 ✓ 1 − εδ m Z ◆ cos θ W 1 sin 2 θ W → sin 2 θ W 1 + Q 2 /m 2 m Z 0 sin θ W ✓ ◆ ε Z = m Z 0 Z 0 δ m Z - Sensitive only to Low-Q 2 (momentum transfer). (Effect negligible for Q 2 >> m Z’2 ) - For typical parameter values, ∆ sin 2 θ W (Weinberg angle shift) is more sensitive. “Low-Q 2 Parity-Violating experiments (measuring Weinberg angle)” seem to be a right place to look: (i) Atomic parity violation, (ii) Polarized electron scattering. Scattering mediated by Dark Force (Light Z’) can be observed “only” in Low-Energy experiments.

  25. Past Low-Q 2 Parity-Violating Experiments (i) Atomic Parity Violation [Weak nuclear charge Q W (Z,N) ≃ − N+Z(1 − 4sin 2 θ W )]: Q W ( 133 Cs) = -72.58(43) in Cesium Experiment [C. Wieman et al (1985-1988)] Q W ( 133 Cs) = -73.23(2) in SM [reflecting new result by Flambaum et al (2012)] in reasonable agreement (1.5 σ ). (ii) Polarized Electron Scattering [Left-Right asymmetry A LR = σ L −σ R / σ L + σ R ]: sin 2 θ W (m Z )=0.2329(13) in Moller scattering; <Q> ≈ 160 MeV) [SLAC E158 (2005)] sin 2 θ W (m Z )=0.23125(16) directly measured at Z-pole [LEP, SLC average] in good agreement. ɣ / Z ∆ sin 2 θ W ' � 0 . 42 εδ m Z m Z 0 f ( Q 2 /m 2 Z 0 )

Recommend


More recommend