Longitudinal Beam Physics Experiments at the University of Maryland Electron Ring John Richardson Harris Institute for Research in Electronics and Applied Physics University of Maryland August 23, 2004
Outline • Motivation: “Intense” Beams • University of Maryland Electron Ring (UMER) • Longitudinal Effects • Evolution of Modulated Beams • Longitudinal Focusing • Future Work • Conclusions
Motivation • New Accelerators and Applications – High Quality, High Current Needed “High quality” = “low emittance” • Limit of: Low Emittance Coulomb Forces Dominate Low Energy “Space Charge Dominated” High Current “Intense”
Motivation • All Beams: SCD at birth (low γ ) γ → • SC-driven effects “frozen in” as big RF Accelerating RF Gun : Terahertz Sections: 5 MeV Diagnostics 75 MeV Time Diagnostics E-Beam Modulation UV Laser Input 4 3.5 0 Terahertz Output 0 3 0 2.5 0 2 0 1.5 0 1 0 0 0.5 0 0 -1.5 -1 -0.5 0 0.5 1 1.5 -11 x 10 (J. Neumann, U. Maryland; Experiment performed at Brookhaven Source Development Lab) Effects: Good or Bad
Motivation • Some Beams: Always SCD Ex: Heavy Ion Fusion 1000 1000000 1000000000 1E+12 1 keV 1 MeV 1 GeV 1 TeV e - electrons p protons HI heavy ions UMER
Longitudinal Expansion • Space Charge – Beam tends to expand b Beam a Beam Pipe • Transverse SC Force – Contain using transverse focusing (Quads) • Longitudinal SC Force – Beam will expand unless contained • Longitudinal E-Field (long wavelength): ∂ λ ⎛ ⎞ g b = − ≈ α + ⎜ ⎟ E sz 2 ln g ∂ πε γ ⎝ ⎠ 2 a 4 z 0 Local Line Charge Density λ [C/m]; Geometry Factor g ; 0 < α < 1
University of Maryland Electron Ring (UMER) 3.7 m
University of Maryland Electron Ring (UMER) Beam Energy: 10keV ( β = 0.2) Beam Current: 0.6 – 100 mA Pulse length: 30 ns – 150 ns (1/2 ring filled at 100ns) Bunch charge: ~5 nC Compact: 12m Circumference Complex: 36 Dipoles > 78 Quadrupoles > 36 Steering Dipoles 17 Diagnostics Ports ε ≈ µ 2 m n 1 Diagnostic End Station
UMER Diagnostics End Station: Every 64 cm: Faraday Cup Beam Position Monitors Pepperpot and Slit-Wire System Energy Spread Analyzer (Under development) Phosphor Screens 0.2 eV resolution At Injection and Extraction: Fast Current Monitors (Bergoz)
64 cm UMER Today
Longitudinal Effects and Experiments
Longitudinal Effects (1) • Beam Expansion/End Erosion λ � c 0 ( z ) � 2c 0 z • Generating Perturbations/Wave Propagation
Longitudinal Effects (2) • Modulation/Wave Interference • Combinations
Longitudinal Effects (3) Common Theme: These effects all evolve at the Sound Speed λ Zqg c = 0 πε γ 0 5 4 m 0 Z Charge State λ Line Charge Density [C/m] 0 ⎛ ⎞ b ≈ α + ⎜ ⎟ 2 ln g Geometry Factor ⎝ ⎠ a typ 6 c ~ 10 m For UMER s 0 One example…
Modulation in UMER Modulation observed when Bias Voltage ≈ 60 BV = 0 BV = 40 BV = 5 BV = 50 BV = 10 BV = 55 BV = 20 BV = 60 BV = 30 BV = 66 Simple Argument – density mod. should become energy mod., vice versa
Modulation in UMER Bergoz (62.6 cm) Modulation observed to disappear, BPM 0 (82.6 cm) return, then start to disappear again BPM 1 (194 cm) as beam travels through UMER BPM 2 (258 cm) BPM 3 (323 cm) BPM 4 (386 cm) BPM 5 (450 cm) BPM 6 (514 cm) BPM 7 (578 cm) BPM 8 (642 cm) BPM 9 (706 cm) BPM 10 (770 cm) BPM 11 (834 cm) BPM 12 (898 cm)
Modulation in UMER Two Questions: 1. Where does it come from? 2. Why does it disappear, then come back?
Source of Modulation • Gun acting like Triode • Increase BV – no longer space charge limited • Gun amplifies ripple, droop, etc., of pulser • Assume Triode/Diode behavior and pulser voltage shape: Triode 5 0 Anode (A) or Plate (P) Pulser Voltage (V) Grid (G) 20 + E B - E C K PV t ( ) 40 “Step” (short path 60 length Beam Pipe reflection?) Anode (A) + − 62.719 80 - 10kV 5 . 10 8 1 . 10 7 0 Grid (G) − − 10 9 t 150 10 9 Cathode (K) − ⋅ ⋅ 30 Droop (Common in pulse BV Time (ns) PV circuits) Ringing (Common in pulse UMER Gun circuits; frequency chirp assumed)
0.01 0.01 0.01 0.01 0 0 0 0 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 − − − − I out ( ) t I out t ( ) I out t ( ) I out ( ) t 0.06 0.06 0.06 0.06 0.08 0.08 0.08 BV ~ -10 V 0.08 0.1 0.1 0.1 0.1 − − 0.110 0.110 − 0.110 − 0.110 2 . 10 2 . 10 4 . 10 6 . 10 8 . 10 1 . 10 1.2 . 10 7 1.4 . 10 2 . 10 2 . 10 4 . 10 6 . 10 8 . 10 1 . 10 1.2 . 10 7 1.4 . 10 8 8 8 8 8 7 7 8 8 8 8 8 7 7 2 . 10 8 2 . 10 8 4 . 10 8 6 . 10 8 8 . 10 8 1 . 10 7 1.2 . 10 7 1.4 . 10 7 0 0 2 . 10 8 2 . 10 8 4 . 10 8 6 . 10 8 8 . 10 8 1 . 10 7 1.2 . 10 7 1.4 . 10 7 0 0 − 9 t − 9 − 9 t − 9 − − − ⋅ ⋅ − ⋅ ⋅ − ⋅ 9 t ⋅ 9 − − 30 10 150 10 30 10 150 10 30 10 150 10 9 t 9 − ⋅ ⋅ 30 10 150 10 BV ~ -70 V 0.01 0.01 0.01 0.01 0 0 0 0 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 − I out t ( ) − − I out t ( ) − I out t ( ) I out t ( ) 0.06 0.06 0.06 0.06 0.08 0.08 0.08 0.08 0.1 0.1 0.1 0.1 − − − − 0.110 0.110 0.110 0.110 2 . 10 8 2 . 10 8 4 . 10 8 6 . 10 8 8 . 10 8 1 . 10 7 1.2 . 10 7 1.4 . 10 7 2 . 10 8 2 . 10 8 4 . 10 8 6 . 10 8 8 . 10 8 1 . 10 7 1.2 . 10 7 1.4 . 10 7 2 . 10 8 2 . 10 8 4 . 10 8 6 . 10 8 8 . 10 8 1 . 10 7 1.2 . 10 7 1.4 . 10 7 2 . 10 8 2 . 10 8 4 . 10 8 6 . 10 8 8 . 10 8 1 . 10 7 1.2 . 10 7 1.4 . 10 7 0 0 0 0 − − − − − − − − − ⋅ 9 t ⋅ 9 − ⋅ 10 9 t 150 10 9 ⋅ − 10 9 ⋅ t 150 10 9 ⋅ − ⋅ 9 t ⋅ 9 30 10 150 10 30 30 30 10 150 10
Modulation Amplitude vs. Distance 1 1 Modulation Amplitude (arb) 0.8 〈 〉 0.6 data 1 1 2.5 ⋅ ⋅ 0.915 cos 0.44 x ( ( ) ) ~ cos( t ) 0.4 0.2 − 6.13 10 3 × 0 0 2 4 6 8 10 〈 〉 x 0 data 0 10 , Distance from Cathode (m) This would make sense for interfering cosine waves 2.5 2 − + cos t x ( ) 1 0 + − cos t x ( ) 1 2 − 2.5 10 5 0 5 10 − 10 x 10
Phase Velocity of Waves Calculate phase velocity from location of nulls in data: = ± × 6 v 1 . 80 10 m (85 mA settings) s p Compare with sound speed: λ qg c = 0 πε γ 0 5 4 m 0 = × 6 (85 mA settings) c 1 . 76 10 m s 0 2.3% Error Result: Modulation splits into forward, backward traveling space charge waves
Longitudinal Focusing
Longitudinal Focusing • Prevent beam expansion to enable extraction • Study compression for HIF • Allow direct manipulation of beam • Concept: c + β 2 c v(z) v(z) 0 v(z) z z z c − β 2 c 0 Initial Condition Beam Expanding Focusing Applied Beam Contracting Direction of Travel
Longitudinal Focusing Voltage Higher Voltage Needed v(z) Lower Voltage Needed E(z) Focusing Voltage – Triangular Pulses
Spiral Generator Disadvantages: Advantages: • “Swingback” Voltage • Triangular Pulse • Spark Gap switching usual • Simple Construction • Inexpensive • Voltage Gain Brau et al., RSI, Sept. 1977
Recombination Diode Ringing Suppression Spiral Generator Improvements Delay Line Patents Pending Inversion of One Channel Transformer Output SG MOSFET Switching
Longitudinal Focusing – Induction Modules D.X. Wang, UMD, 1993
Future Work • Closure • Refine work • Multiple Perturbations • Modulation (esp. simulation) • LF – HV tests, Beam tests
Conclusion All beams are sometimes Intense; Some beams are always Intense! • UMER – Intense Beams • Many interesting Longitudinal effects • Lots of work to be done
Recommend
More recommend