locality and a bound on entanglement assistance to
play

Locality and a bound on entanglement assistance to classical - PowerPoint PPT Presentation

Locality and a bound on entanglement assistance to classical communication Mih aly Weiner (work in progress; joint with P.E. Frenkel ) Quantum Information and Operator Algebras Rome, 16 february 2018 Mih aly Weiner Locality and


  1. Locality and a bound on entanglement assistance to classical communication Mih´ aly Weiner (work in progress; joint with P.E. Frenkel ) Quantum Information and Operator Algebras Rome, 16 february 2018 Mih´ aly Weiner Locality and entanglement assistance 1 / 15

  2. 2 headed oracles X 1 ⇒ ⇐ X 2 Z 1 ⇐ ⇒ Z 2 Mih´ aly Weiner Locality and entanglement assistance 2 / 15

  3. 2 headed oracles X 1 ⇒ ⇐ X 2 Z 1 ⇐ ⇒ Z 2 aa Mih´ aly Weiner Locality and entanglement assistance 2 / 15

  4. 2 headed oracles X 1 ⇒ ⇐ X 2 Z 1 ⇐ ⇒ Z 2 aa aa Mih´ aly Weiner Locality and entanglement assistance 2 / 15

  5. 2 headed oracles X 1 ⇒ ⇐ X 2 Z 1 ⇐ ⇒ Z 2 aa user’s point of view: aa Mih´ aly Weiner Locality and entanglement assistance 2 / 15

  6. 2 headed oracles X 1 ⇒ ⇐ X 2 Z 1 ⇐ ⇒ Z 2 aa user’s point of view: p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) aa Mih´ aly Weiner Locality and entanglement assistance 2 / 15

  7. 2 headed oracles X 1 ⇒ ⇐ X 2 Z 1 ⇐ ⇒ Z 2 aa user’s point of view: p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) aa aaa. ⇒ a point in R n 1 × R n 2 × R m 1 × R m 2 aa Mih´ aly Weiner Locality and entanglement assistance 2 / 15

  8. 2 headed oracles X 1 ⇒ ⇐ X 2 Z 1 ⇐ ⇒ Z 2 aa user’s point of view: p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) aa aaa. ⇒ a point in R n 1 × R n 2 × R m 1 × R m 2 aa aaa. ⇒ all 2-headed oracles form a polytope aa Mih´ aly Weiner Locality and entanglement assistance 2 / 15

  9. Realizations p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = ? Mih´ aly Weiner Locality and entanglement assistance 3 / 15

  10. Realizations p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = ? Classical: Mih´ aly Weiner Locality and entanglement assistance 3 / 15

  11. Realizations p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = ? � Classical: p I ,λ ( z 1 | x 1 ) p II ,λ ( z 2 | x 2 ) d µ ( λ ) Mih´ aly Weiner Locality and entanglement assistance 3 / 15

  12. Realizations p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = ? � Classical: p I ,λ ( z 1 | x 1 ) p II ,λ ( z 2 | x 2 ) d µ ( λ ) Mih´ aly Weiner Locality and entanglement assistance 3 / 15

  13. Realizations p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = ? � Classical: p I ,λ ( z 1 | x 1 ) p II ,λ ( z 2 | x 2 ) d µ ( λ ) Mih´ aly Weiner Locality and entanglement assistance 3 / 15

  14. Realizations p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = ? � Classical: p I ,λ ( z 1 | x 1 ) p II ,λ ( z 2 | x 2 ) d µ ( λ ) Quantum: ϕ ( A x 1 , z 1 B x 2 , z 2 ) Mih´ aly Weiner Locality and entanglement assistance 3 / 15

  15. Realizations p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = ? � Classical: p I ,λ ( z 1 | x 1 ) p II ,λ ( z 2 | x 2 ) d µ ( λ ) Quantum: ϕ ( A x 1 , z 1 B x 2 , z 2 ) where ϕ is a positive normalized functional A x 1 , z 1 ≥ 0 , � z 1 A x 1 , z 1 = I & sim. cond. for B [ A x 1 , z 1 , B x 2 , z 2 ] = 0 Mih´ aly Weiner Locality and entanglement assistance 3 / 15

  16. No-signaling Input at 1 should have no effect on output at 2: Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  17. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = p ( Z 2 = z 2 | X 1 = ˜ x 1 , X 2 = x 2 ) z k Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  18. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = p ( Z 2 = z 2 | X 1 = ˜ x 1 , X 2 = x 2 ) z k Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  19. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = p ( Z 2 = z 2 | X 1 = ˜ x 1 , X 2 = x 2 ) z k Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  20. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = p ( Z 2 = z 2 | X 1 = ˜ x 1 , X 2 = x 2 ) z k Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  21. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = func. of z 2 & x 2 only z 1 Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  22. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = func. of z 2 & x 2 only z 1 Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  23. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = func. of z 2 & x 2 only z 1 Input at 2 should have no effect on output at 1: Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  24. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = func. of z 2 & x 2 only z 1 Input at 2 should have no effect on output at 1: � p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = func. of z 1 & x 1 only z 2 Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  25. No-signaling Input at 1 should have no effect on output at 2: � p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = func. of z 2 & x 2 only z 1 Input at 2 should have no effect on output at 1: � p ( Z 1 = z 1 , Z 2 = z 2 | X 1 = x 1 , X 2 = x 2 ) = func. of z 1 & x 1 only z 2 XX � “NS-oracle” ∈ “No-signaling polytope” Mih´ aly Weiner Locality and entanglement assistance 4 / 15

  26. No-signaling � quantum No-signaling polytope: f.i Mih´ aly Weiner Locality and entanglement assistance 5 / 15

  27. No-signaling � quantum No-signaling polytope: ,, Mih´ aly Weiner Locality and entanglement assistance 5 / 15

  28. No-signaling � quantum No-signaling polytope: , Mih´ aly Weiner Locality and entanglement assistance 5 / 15

  29. No-signaling � quantum No-signaling polytope: Mih´ aly Weiner Locality and entanglement assistance 5 / 15

  30. No-signaling � quantum No-signaling polytope: Mih´ aly Weiner Locality and entanglement assistance 5 / 15

  31. No-signaling � quantum No-signaling polytope: Mih´ aly Weiner Locality and entanglement assistance 5 / 15

  32. Information Causality aa d : n cbits data aaaaa aaaaaaa aaaaaaa aaaaa r ∈ { 1 , . . . n } aaaa ⇓ aaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇓ g : guess ⇒ aaaa ⇓ aaaaaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇑ h : m cbits help aaaaaaa ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ n � I ( d k : g | r = k ) ≤ m k =1 Mih´ aly Weiner Locality and entanglement assistance 6 / 15

  33. Information Causality aa d : n cbits data aaaaa aaaaaaa aaaaaaa aaaaa r ∈ { 1 , . . . n } aaaa ⇓ aaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇓ g : guess ⇒ aaaa ⇓ aaaaaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇑ h : m cbits help aaaaaaa ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ n � I ( d k : g | r = k ) ≤ m k =1 Mih´ aly Weiner Locality and entanglement assistance 6 / 15

  34. Information Causality aa d : n cbits data aaaaa aaaaaaa aaaaaaa aaaaa r ∈ { 1 , . . . n } aaaa ⇓ aaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇓ g : guess ⇒ aaaa ⇓ aaaaaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇑ h : m cbits help aaaaaaa ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ n � I ( d k : g | r = k ) ≤ m k =1 Mih´ aly Weiner Locality and entanglement assistance 6 / 15

  35. Information Causality aa d : n cbits data aaaaa aaaaaaa aaaaaaa aaaaa r ∈ { 1 , . . . n } aaaa ⇓ aaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇓ g : guess ⇒ aaaa ⇓ aaaaaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇑ h : m cbits help aaaaaaa ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ n � I ( d k : g | r = k ) ≤ m k =1 Mih´ aly Weiner Locality and entanglement assistance 6 / 15

  36. Information Causality aa d : n cbits data aaaaa aaaaaaa aaaaaaa aaaaa r ∈ { 1 , . . . n } aaaa ⇓ aaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇓ g : guess ⇒ aaaa ⇓ aaaaaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇑ h : m cbits help aaaaaaa ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ n � I ( d k : g | r = k ) ≤ m k =1 Mih´ aly Weiner Locality and entanglement assistance 6 / 15

  37. Information Causality aa d : n cbits data aaaaa aaaaaaa aaaaaaa aaaaa r ∈ { 1 , . . . n } aaaa ⇓ aaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇓ g : guess ⇒ aaaa ⇓ aaaaaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇑ h : m cbits help aaaaaaa ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ n � I ( d k : g | r = k ) ≤ m k =1 Mih´ aly Weiner Locality and entanglement assistance 6 / 15

  38. Information Causality aa d : n cbits data aaaaa aaaaaaa aaaaaaa aaaaa r ∈ { 1 , . . . n } aaaa ⇓ aaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇓ g : guess ⇒ aaaa ⇓ aaaaaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇑ h : m cbits help aaaaaaa ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ n � I ( d k : g | r = k ) ≤ m k =1 Mih´ aly Weiner Locality and entanglement assistance 6 / 15

  39. Information Causality aa d : n cbits data aaaaa aaaaaaa aaaaaaa aaaaa r ∈ { 1 , . . . n } aaaa ⇓ aaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇓ g : guess ⇒ aaaa ⇓ aaaaaaa aaaaaaa aaaaaaa aaaaaa aaaaaa aaaaaa ⇑ h : m cbits help aaaaaaa ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ n � I ( d k : g | r = k ) ≤ m k =1 Mih´ aly Weiner Locality and entanglement assistance 6 / 15

Recommend


More recommend