linear algebra and differential equations math 54 lecture
play

Linear algebra and differential equations (Math 54): Lecture 16 - PowerPoint PPT Presentation

Linear algebra and differential equations (Math 54): Lecture 16 Vivek Shende March 19, 2019 Hello and welcome to class! Hello and welcome to class! Last time Hello and welcome to class! Last time We had been discussing orthogonality, Hello


  1. Linear algebra and differential equations (Math 54): Lecture 16 Vivek Shende March 19, 2019

  2. Hello and welcome to class!

  3. Hello and welcome to class! Last time

  4. Hello and welcome to class! Last time We had been discussing orthogonality,

  5. Hello and welcome to class! Last time We had been discussing orthogonality, and in particular how to compute orthogonal projections in term of an orthonormal bases.

  6. Hello and welcome to class! Last time We had been discussing orthogonality, and in particular how to compute orthogonal projections in term of an orthonormal bases. This time

  7. Hello and welcome to class! Last time We had been discussing orthogonality, and in particular how to compute orthogonal projections in term of an orthonormal bases. This time We will discuss how to produce an orthonormal basis.

  8. 1d case Given a basis of a 1-d vector space V

  9. 1d case Given a basis of a 1-d vector space V I.e., a nonzero vector v ∈ V

  10. 1d case Given a basis of a 1-d vector space V I.e., a nonzero vector v ∈ V You can get an orthonormal basis

  11. 1d case Given a basis of a 1-d vector space V I.e., a nonzero vector v ∈ V You can get an orthonormal basis v || v ||

  12. 1d case: example Given the basis (1 , 2 , 3 , 4) of the 1-d vector space Span ((1 , 2 , 3 , 4))

  13. 1d case: example Given the basis (1 , 2 , 3 , 4) of the 1-d vector space Span ((1 , 2 , 3 , 4)) You can get an orthonormal basis

  14. 1d case: example Given the basis (1 , 2 , 3 , 4) of the 1-d vector space Span ((1 , 2 , 3 , 4)) You can get an orthonormal basis (1 , 2 , 3 , 4) 1 || (1 , 2 , 3 , 4) || = √ (1 , 2 , 3 , 4) 30

  15. 2d case Given a basis of a 2-d vector space V

  16. 2d case Given a basis of a 2-d vector space V I.e., two nonzero vectors v , w ∈ V

  17. 2d case Given a basis of a 2-d vector space V I.e., two nonzero vectors v , w ∈ V , neither a multiple of the other

  18. 2d case Given a basis of a 2-d vector space V I.e., two nonzero vectors v , w ∈ V , neither a multiple of the other First we want to modify w so it becomes orthogonal to v

  19. 2d case Given a basis of a 2-d vector space V I.e., two nonzero vectors v , w ∈ V , neither a multiple of the other First we want to modify w so it becomes orthogonal to v , by projection:

  20. 2d case Given a basis of a 2-d vector space V I.e., two nonzero vectors v , w ∈ V , neither a multiple of the other First we want to modify w so it becomes orthogonal to v , by projection: w ′ = w − w · v v · v v

  21. 2d case Given a basis of a 2-d vector space V I.e., two nonzero vectors v , w ∈ V , neither a multiple of the other First we want to modify w so it becomes orthogonal to v , by projection: w ′ = w − w · v v · v v Now normalize: v ′ := || v || , and w ′′ = w ′ v | w ′ | .

  22. 2d example Given the basis (1 , 2 , 3) , (2 , 3 , 1) of the 2d space they span

  23. 2d example Given the basis (1 , 2 , 3) , (2 , 3 , 1) of the 2d space they span First project (2 , 3 , 1) to the orthogonal complement of (1 , 2 , 3).

  24. 2d example Given the basis (1 , 2 , 3) , (2 , 3 , 1) of the 2d space they span First project (2 , 3 , 1) to the orthogonal complement of (1 , 2 , 3). (2 , 3 , 1) − (2 , 3 , 1) · (1 , 2 , 3) (1 , 2 , 3) · (1 , 2 , 3)(1 , 2 , 3) = (2 , 3 , 1) − 11 14(1 , 2 , 3)

  25. 2d example Given the basis (1 , 2 , 3) , (2 , 3 , 1) of the 2d space they span First project (2 , 3 , 1) to the orthogonal complement of (1 , 2 , 3). (2 , 3 , 1) − (2 , 3 , 1) · (1 , 2 , 3) (1 , 2 , 3) · (1 , 2 , 3)(1 , 2 , 3) = (2 , 3 , 1) − 11 14(1 , 2 , 3) = 1 14(17 , 20 , − 19)

  26. 2d example Given the basis (1 , 2 , 3) , (2 , 3 , 1) of the 2d space they span First project (2 , 3 , 1) to the orthogonal complement of (1 , 2 , 3). (2 , 3 , 1) − (2 , 3 , 1) · (1 , 2 , 3) (1 , 2 , 3) · (1 , 2 , 3)(1 , 2 , 3) = (2 , 3 , 1) − 11 14(1 , 2 , 3) = 1 14(17 , 20 , − 19) And then normalize. 1 1 √ √ (2 , 3 , 4) 17 2 + 20 2 + 19 2 (17 , 20 , − 19) 14

  27. Try it yourself Find an orthonormal basis of the span of (1 , 1 , 0) and (1 , 0 , 1).

  28. Gram-Schmidt Consider a vector space V ⊂ R n with basis v 1 , v 2 , . . . , v k .

  29. Gram-Schmidt Consider a vector space V ⊂ R n with basis v 1 , v 2 , . . . , v k . Project v 2 to the subspace orthogonal to v 1

  30. Gram-Schmidt Consider a vector space V ⊂ R n with basis v 1 , v 2 , . . . , v k . Project v 2 to the subspace orthogonal to v 1 Project v 3 to the subspace orthogonal to v 1 , v 2

  31. Gram-Schmidt Consider a vector space V ⊂ R n with basis v 1 , v 2 , . . . , v k . Project v 2 to the subspace orthogonal to v 1 Project v 3 to the subspace orthogonal to v 1 , v 2 Project v 3 to the subspace orthogonal to v 1 , v 2 , v 3

  32. Gram-Schmidt Consider a vector space V ⊂ R n with basis v 1 , v 2 , . . . , v k . Project v 2 to the subspace orthogonal to v 1 Project v 3 to the subspace orthogonal to v 1 , v 2 Project v 3 to the subspace orthogonal to v 1 , v 2 , v 3 Etc.

  33. Gram-Schmidt Consider a vector space V ⊂ R n with basis v 1 , v 2 , . . . , v k . Project v 2 to the subspace orthogonal to v 1 Project v 3 to the subspace orthogonal to v 1 , v 2 Project v 3 to the subspace orthogonal to v 1 , v 2 , v 3 Etc. Rescale everything to ensure they are unit vectors.

  34. Gram-Schmidt That is, from v 1 , . . . , v k , form:

  35. Gram-Schmidt That is, from v 1 , . . . , v k , form: = u 1 v 1 � v 2 · u 1 � = v 2 − u 2 u 1 u 1 · u 1 � v 3 · u 1 � � v 3 · u 2 � = v 3 − u 1 − u 3 u 2 u 1 · u 1 u 2 · u 2 � v 4 · u 1 � � v 4 · u 2 � � v 4 · u 3 � = v 4 − u 1 − u 2 − u 4 u 3 u 1 · u 1 u 2 · u 2 u 3 · u 3 . . .

  36. Gram-Schmidt That is, from v 1 , . . . , v k , form: = u 1 v 1 � v 2 · u 1 � = v 2 − u 2 u 1 u 1 · u 1 � v 3 · u 1 � � v 3 · u 2 � = v 3 − u 1 − u 3 u 2 u 1 · u 1 u 2 · u 2 � v 4 · u 1 � � v 4 · u 2 � � v 4 · u 3 � = v 4 − u 1 − u 2 − u 4 u 3 u 1 · u 1 u 2 · u 2 u 3 · u 3 . . . And then rescale all the u i .

  37. Example Apply the Gram-Schmidt process to (1 , 1 , 1 , 0) , (1 , 0 , 1 , 1) , (1 , 1 , 0 , 1)

  38. Example Apply the Gram-Schmidt process to (1 , 1 , 1 , 0) , (1 , 0 , 1 , 1) , (1 , 1 , 0 , 1) We take v 1 = (1 , 1 , 1 , 0) , v 2 = (1 , 0 , 1 , 1) , v 3 = (1 , 1 , 0 , 1).

  39. Example Apply the Gram-Schmidt process to (1 , 1 , 1 , 0) , (1 , 0 , 1 , 1) , (1 , 1 , 0 , 1) We take v 1 = (1 , 1 , 1 , 0) , v 2 = (1 , 0 , 1 , 1) , v 3 = (1 , 1 , 0 , 1). Then u 1 = v 1 = (1 , 1 , 1 , 0),

  40. Example Apply the Gram-Schmidt process to (1 , 1 , 1 , 0) , (1 , 0 , 1 , 1) , (1 , 1 , 0 , 1) We take v 1 = (1 , 1 , 1 , 0) , v 2 = (1 , 0 , 1 , 1) , v 3 = (1 , 1 , 0 , 1). Then u 1 = v 1 = (1 , 1 , 1 , 0), � v 2 · u 1 � u 1 = (1 , 0 , 1 , 1) − 2 3(1 , 1 , 1 , 0) = 1 u 2 = v 2 − 3(1 , − 2 , 1 , 3) u 1 · u 1

  41. Example u 2 = 1 u 1 = (1 , 1 , 1 , 0) 3(1 , − 2 , 1 , 3) v 3 = (1 , 1 , 0 , 1)

  42. Example u 2 = 1 u 1 = (1 , 1 , 1 , 0) 3(1 , − 2 , 1 , 3) v 3 = (1 , 1 , 0 , 1) � v 3 · u 1 � � v 3 · u 2 � = v 3 − u 1 − u 3 u 2 u 1 · u 1 u 2 · u 2 (1 , 1 , 0 , 1) − 2 3(1 , 1 , 1 , 0) − 2 = 15(1 , − 2 , 1 , 3) 1 = 15((15 , 15 , 0 , 15) − (10 , 10 , 10 , 0) − (2 , − 4 , 2 , 6)) 1 = 15(3 , 9 , − 12 , 9)

  43. Example u 2 = 1 u 1 = (1 , 1 , 1 , 0) 3(1 , − 2 , 1 , 3) v 3 = (1 , 1 , 0 , 1) � v 3 · u 1 � � v 3 · u 2 � = v 3 − u 1 − u 3 u 2 u 1 · u 1 u 2 · u 2 (1 , 1 , 0 , 1) − 2 3(1 , 1 , 1 , 0) − 2 = 15(1 , − 2 , 1 , 3) 1 = 15((15 , 15 , 0 , 15) − (10 , 10 , 10 , 0) − (2 , − 4 , 2 , 6)) 1 = 15(3 , 9 , − 12 , 9) Finally, rescaling: 1 1 (3 , 9 , − 12 , − 9) √ (1 , 1 , 1 , 0) √ (1 , − 2 , 1 , 3) √ 3 2 + 9 2 + 12 2 + 9 2 3 15

  44. Try it yourself Apply the Gram-Schmidt process to (1 , 0 , 0 , 1) , (1 , 0 , 1 , 0) , (1 , 1 , 0 , 0)

  45. Orthogonal matrices For a square matrix A , the following are equivalent:

  46. Orthogonal matrices For a square matrix A , the following are equivalent: ◮ A has orthonormal rows

  47. Orthogonal matrices For a square matrix A , the following are equivalent: ◮ A has orthonormal rows ◮ AA T = I

  48. Orthogonal matrices For a square matrix A , the following are equivalent: ◮ A has orthonormal rows ◮ AA T = I ◮ A T = A − 1

  49. Orthogonal matrices For a square matrix A , the following are equivalent: ◮ A has orthonormal rows ◮ AA T = I ◮ A T = A − 1 ◮ A T A = I

  50. Orthogonal matrices For a square matrix A , the following are equivalent: ◮ A has orthonormal rows ◮ AA T = I ◮ A T = A − 1 ◮ A T A = I ◮ A has orthonormal columns

  51. Orthogonal matrices For a square matrix A , the following are equivalent: ◮ A has orthonormal rows ◮ AA T = I ◮ A T = A − 1 ◮ A T A = I ◮ A has orthonormal columns Such matrices are called orthogonal.

  52. Orthogonal matrices For a square matrix A , the following are equivalent: ◮ A has orthonormal rows ◮ AA T = I ◮ A T = A − 1 ◮ A T A = I ◮ A has orthonormal columns Such matrices are called orthogonal. They also preserve dot products: ( Av ) · ( Aw ) = ( Av ) T ( Aw ) = v T A T Aw = v T w = v · w

  53. QR decomposition Observe that the steps we took in the Gram-Schmidt process each involve adding multiples of earlier vectors to later ones.

Recommend


More recommend