Lecture V: Energy Frontier Connections M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI NLDBD School 10/31-11/3 2017 � 1
Lecture V Goals • Provide some background on present & prospective opportunities for neutrino physics probes at high energy colliders • Alert you to the prospects for LNV searches at the high energy frontier • Illustrate the complementarity with 0 νββ -decay • Invite questions ! 2
Lecture V Outline I. Context II. TeV Scale (and below) LNV III. Sterile neutrinos 3
I. Context 4
BSM Physics: Where Does it Live ? BSM ? SUSY, see-saw, BSM Higgs sector… Mass Scale M W Sterile ν ’s, axions, BSM ? dark U(1)… Coupling Is the mass scale associated with m ν far above M W ? Near M W ? Well below M W ? 5
BSM Physics: Where Does it Live ? BSM ? SUSY, see-saw, BSM Higgs sector… Mass Scale M W Sterile ν ’s, axions, BSM ? dark U(1)… Coupling High energy frontier Is the mass scale associated with m ν far above M W ? Near M W ? Well below M W ? 6
Energy Frontier LHC International Linear Collider ATLAS CMS Future Circular e + e - & pp Future Circular e + e - & pp
Energy Frontier LHC / HL-LHC
Future Circular Colliders 9
Future Circular Colliders 10
Future Circular Colliders Possible site of CEPC-SppC Q. Qin, PANIC 2017, Beijing 11
CEPC / SppC Q. Qin, PANIC e+ e- LTB 2017, Beijing CEPC (50km-100km) Boostr(50Km-100km) SppC 50-100Km) Parameter Design Goal Par$cles e+, e- Center of mass energy 2 x 120 GeV Peak Luminosity >2 x 10 34 /cm 2 /s No. of IP 2 12
SppC Parameter Unit Value PreCDR CDR Ul$mate 100 100 Circumference km 54.4 75 125-150 C.M. energy TeV 70.6 12 20-24 Dipole field T 20 2.1 4.2 Injection energy TeV 2.1 2 2 Number of IPs 2 1.0x10 35 - Nominal luminosity per IP cm -2 s -1 1.2x10 35 0.75 - Beta function at collision m 0.75 0.7 - Circulating beam current A 1.0 25 - Bunch separation ns 25 1.5x10 11 - Bunch population 2.0x10 11 SR power per beam MW 2.1 1.1 - 13 13 - SR heat load per aperture @arc W/m 45
ILC Shin Michizono, PANIC 2017, Beijing 14
Compact Linear Collier (CLIC) R. Franceschini, LLP Trieste, October 2917 15
ACFI Workshop: July 2017 16
II. TeV Scale (and below) LNV 17
LNV Mass Scale & 0 νβ νββ -Decay Underlying A(Z,N) ! ! A(Z+2, N-2) + e - e - Physics • 3 light neutrinos only: source of neutrino mass at the very high see-saw scale • 3 light neutrinos with TeV scale source of neutrino mass • > 3 light neutrinos 18
LNV Mass Scale & 0 νβ νββ -Decay Underlying A(Z,N) ! ! A(Z+2, N-2) + e - e - Physics • 3 light neutrinos only: source of neutrino mass at the very high see-saw scale • 3 light neutrinos with TeV scale source of neutrino mass • > 3 light neutrinos Two parameters: Effective coupling & effective heavy particle mass 19
νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV LNV Mechanism e − e − • Majorana mass generated at the TeV scale F • Low-scale see-saw • Radiative m ν S S • m MIN << 0.01 eV but 0 νββ -signal accessible with tonne-scale exp’ts due to heavy Majorana ( ) ( ) A Z , N A Z − 2, N + 2 particle exchange 20 14
νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV LNV Mechanism RPV SUSY e − e − • Majorana mass generated at the TeV scale ~ W • Low-scale see-saw ~ ~ • Radiative m ν e e • m MIN << 0.01 eV but 0 νββ -signal accessible with tonne-scale exp’ts due to heavy Majorana A(Z, N) A(Z+2, N-2) particle exchange 21 32
νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV LNV Mechanism LRSM e − e − • Majorana mass generated at the TeV scale N R • Low-scale see-saw • Radiative m ν W R W R • m MIN << 0.01 eV but 0 νββ -signal accessible with tonne-scale exp’ts due to heavy Majorana A(Z, N) A(Z+2, N-2) particle exchange 22 31
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana 0 νββ -Decay pp Collisions e e e e _ d d u u LNV LNV P P _ d d u u X X A(Z, N) A(Z+2, N-2) 23
νββ -Decay: TeV Scale LNV 0 νβ LHC: SS Dilepton + Dijet L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana 0 νββ -Decay pp Collisions e e e e _ d d u u LNV LNV P P _ d d u u X X A(Z, N) A(Z+2, N-2) 24
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Can it be discovered e − 0 νββ - decay with combination of e − νββ & LHC searches ? 0 νβ d u d u Simplified models S + e − LHC: pp ! jj e - e - F 0 e − S + 25 d u
Simplified Models: Illustrative Case S: (1, 2, ½ ) F: (1, 0, 0) Majorana 26
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Effective operators: e − 0 νββ - decay e − d u g 1 d u S + e − g 2 LHC: pp ! jj e - e - F 0 C 1 = g 1 2 g 2 2 e − S + 27 d u
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Effective operators: e − 0 νββ - decay e − d u d u S + e − LHC: pp ! jj e - e - F 0 0 νββ -decay as fu g g e ff = C 1 ( Λ ) 1 / 4 e − S + 28 d u . We use a prospec
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − F S S A(Z, N) A(Z+2, N-2) 29 T. Peng, MRM, P. Winslow 1508.04444 40
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F S S A(Z, N) A(Z+2, N-2) 30 T. Peng, MRM, P. Winslow 1508.04444 41
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F S S Nuc & had matrix elements A(Z, N) A(Z+2, N-2) 31 T. Peng, MRM, P. Winslow 1508.04444 42
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F LHC: ee jj S S A(Z, N) A(Z+2, N-2) 32 T. Peng, MRM, P. Winslow 1508.04444 43
νββ -Decay: TeV Scale LNV & m ν 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Implications for m ν : Controls m ν Schecter-Valle: non-vanishing Simplified model: possible Majorana mass at (multi) loop level (larger) one loop Majorana mass 33
νββ -Decay: TeV Scale LNV & m ν 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Implications for m ν : Ton Scale Signal m ν (loop) 34 A hypothetical scenario
νββ / LHC Interplay: Matrix Elements 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − F S S Assume GERDA present limit & different Nuc/Had MEs A(Z, N) A(Z+2, N-2) 35 T. Peng, MRM, P. Winslow 1508.04444 16
νββ / LHC Interplay: Matrix Elements 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − e g n e l l a h C F S S Assume GERDA present limit & different Nuc/Had MEs A(Z, N) A(Z+2, N-2) 36 T. Peng, MRM, P. Winslow 1508.04444 16
νββ -Decay / LHC Comparison: Details 0 νβ • LHC: Backgrounds • LHC energy scale ! 0 νβ νββ -decay scale: running • 0 νβ νββ -decay: hadronic & nuclear matrix elements 37
LHC Backgrounds: Charge Flip g e + e - Z e + transfers most of p T to conversion e - ; Z / γ * + jets ! apparent e - e - jj event e + e - g 38
LHC Backgrounds: Charge Flip Looks like SS dilepton g e + e - Z e + transfers most of p T to conversion e - ; Z / γ * + jets ! apparent e - e - jj event e + e - g 39
LHC Backgrounds: Jet Fakes Jet depositing energy in EM calorimeter 40
Energy Scale Evolution d u d u S + e − e − F 0 e − e − S + d u d u LHC: pp ! jj e - e - 0 νββ - decay Running 41
Energy Scale Evolution QCD Running Low energy: Assuming C k = 1 at µ = 5 GeV ! Effective DBD amplitude for O 1 substantially weaker for given LHC constraints 42
Hadronic & Nuclear Matrix Elements d u π - e - e − e − e - π - d u Hadrons & leptons Quarks & leptons Nuclei 43
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − F S S A(Z, N) A(Z+2, N-2) 44 T. Peng, MRM, P. Winslow 1508.04444 40
Recommend
More recommend