lecture 5 hierarchical control theoretical and numerical
play

Lecture 5: Hierarchical control: theoretical and numerical results - PowerPoint PPT Presentation

Lecture 5: Hierarchical control: theoretical and numerical results Enrique FERNNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla Hierarchical control: why and what for Nash and Pareto equilibria Stackelberg strategies Numerics E. Fernndez-Cara


  1. Lecture 5: Hierarchical control: theoretical and numerical results Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla Hierarchical control: why and what for Nash and Pareto equilibria Stackelberg strategies Numerics E. Fernández-Cara Hierarchical control

  2. Outline Background 1 The Stackelberg-Nash strategy The main result Numerical analysis and results 2 Computation of Nash equilibria Computation of Pareto equilibria Numerical solution of the Stackelberg-Nash null control problem Additional results and comments 3 E. Fernández-Cara Hierarchical control

  3. Control issues The meaning of control CONTROL PROBLEMS What is usual: act to get good (or the best) results for � E ( y ) = F ( v ) + . . . What is easier? Solving? Controlling? Two classical approaches: Optimal control Controllability Question: How can we follow both viewpoints together? E. Fernández-Cara Hierarchical control

  4. Background Both viewpoints Example: Optimal-control / controllability problem A simplified model for the autonomous car driving problem The system: x ( 0 ) = x 0 x t = f ( x , u ) , Constraints: dist. ( x ( t ) , Z ( t )) ≥ ε ∀ t u ∈ U ad ( | u ( t ) | ≤ C ) u determines direction and speed Goals (prescribed x T and ˆ x ): x ( T ) = x T (or | x ( T ) − x T | ≤ ε . . . ) Minimize sup t | x ( t ) − ˆ x ( t ) | [Sontag, Sussman-Tang, . . . ] E. Fernández-Cara Hierarchical control

  5. Optimal control + controllability Automatic driving Figure: The ICARE Project, INRIA, France. Autonomous car driving. Malis-Morin-Rives-Samson, 2004 The car in the street E. Fernández-Cara Hierarchical control

  6. Optimal control + controllability Automatic driving Figure: Nissan ID. Autonomous car driving. 2015–2020 What was announced in 2014: • Nissan ID 1.0 (2015), highways and traffic jams (no lane change) - OK • ID 2.0 (2018), overtaking and lane change • ID 3.0 (2020), complete autonomous driving in town http://reports.nissan-global.com/EN/?p=17295 E. Fernández-Cara Hierarchical control

  7. Hierarchical control The system and the controls. Meaning Another way to connect optimal control and controllability: HIERARCHICAL CONTROL (Stackelberg-Nash, Stackelberg-Pareto, . . . ) The main ideas in the context of Navier-Stokes: Three controls: one leader, two followers y t +( y · ∇ ) y − ∆ y + ∇ p = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ Ω × ( 0 , T )   ∇ · y = 0 , ( x , t ) ∈ Ω × ( 0 , T )   y = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T )  y ( x , 0 ) = y 0 ( x ) ,  x ∈ Ω  Disjoint domains O , O i , ( i = 1 , 2 ) Three objectives: “Simultaneously”, y ≈ y i , d in Ω × ( 0 , T ) , i = 1 , 2, reasonable effort: �� �� | y − y i , d | 2 + µ | v i | 2 , Minimize α i i = 1 , 2 Ω × ( 0 , T ) O i × ( 0 , T ) Bi-objective optimal control - The task of the followers Get y ( x , T ) ≡ 0 Null controllability - The task of the leader E. Fernández-Cara Hierarchical control

  8. Hierarchical control The system and the controls. Meaning y t +( y · ∇ ) y − ∆ y + ∇ p = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ Ω × ( 0 , T )   ∇ · y = 0 , ( x , t ) ∈ Ω × ( 0 , T )   y = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T )  y ( x , 0 ) = y 0 ( x ) ,  x ∈ Ω  Many applications: Heating: Controlling temperatures Heat sources at different locations - Heat PDE (linear, semilinear, etc.) Tumor growth: Controlling tumor cell densities Radiotherapy strategies - Reaction-diffusion PDEs bilinear control Fluid mechanics: Controlling fluid velocity fields Several mechanical actions - Stokes, Navier-Stokes or similar Finances: Controlling the price of an option Agents at different stock prices, etc. - Backwards in time heat-like PDE Degenerate coefficients Contributions: Lions, Díaz-Lions, Glowinski-Periaux-Ramos, Guillén, . . . Optimal control + AC E. Fernández-Cara Hierarchical control

  9. Hierarchical control The system and the controls. Meaning A SIMPLIFIED PROBLEM FOR THE 1D HEAT PDE Again three controls: one leader, two followers y t − y xx = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , T )   y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T ) ( H ) y ( x , 0 ) = y 0 ( x ) , x ∈ ( 0 , 1 )  Different intervals O , O i Again three objectives: Simultaneously, y ≈ y i , d in Ω × ( 0 , T ) , i = 1 , 2, reasonable effort: �� �� | y − y i , d | 2 + µ | v i | 2 , Minimize α i i = 1 , 2 Ω × ( 0 , T ) O i × ( 0 , T ) Bi-objective optimal control - Followers’ task In practice, does an equilibrium ( v 1 ( f ) , v 2 ( f )) exist for each f ? Get y ( T ) = 0 Null controllability - Leader’s task Can we find f such that y ( T ) = 0? What can we do? E. Fernández-Cara Hierarchical control

  10. Hierarchical control The Stackelberg-Nash strategy THE STACKELBERG-NASH STRATEGY Step 1: f is fixed �� �� | y − y i , d | 2 + µ | v i | 2 , i = 1 , 2 J i ( v 1 , v 2 ) := α i Ω × ( 0 , T ) O i × ( 0 , T ) Find a Nash equilibrium ( v 1 ( f ) , v 2 ( f )) with v i ( f ) ∈ L 2 ( O i × ( 0 , T )) : ∀ v 1 ∈ L 2 ( O 1 × ( 0 , T )) J 1 ( v 1 ( f ) , v 2 ( f )) ≤ J 1 ( v 1 , v 2 ( f )) ∀ v 2 ∈ L 2 ( O 2 × ( 0 , T )) J 2 ( v 1 ( f ) , v 2 ( f )) ≤ J 2 ( v 1 ( f ) , v 2 ) Equivalent to an optimality system: y t − y xx = f 1 O − 1 µ φ 1 1 O 1 − 1 µ φ 2 1 O 2     i = 1 , 2 − φ i , t − φ i , xx = α i ( y − y i , d ) ,  φ i ( 0 , t ) = φ i ( 1 , t ) = 0 , y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T )    y ( x , 0 ) = y 0 ( x ) , φ i ( x , T ) = 0 , x ∈ ( 0 , 1 )  v i ( f ) = − 1 µ φ i | O i × ( 0 , T ) ∃ ( v 1 ( f ) , v 2 ( f )) ? Uniqueness? E. Fernández-Cara Hierarchical control

  11. Hierarchical control The Stackelberg-Nash strategy THE STACKELBERG-NASH STRATEGY Step 2: Find f such that y t − y xx = f 1 O − 1 µ φ 1 1 O 1 − 1 µ φ 2 1 O 2   i = 1 , 2 ( HSN ) 1 − φ i , t − φ i , xx = α i ( y − y i , d ) , y | t = 0 = y 0 ( x ) , φ i | t = T = 0 , etc.  y ( x , T ) = 0 , x ∈ ( 0 , 1 ) ( HSN ) 2 with � f � L 2 ( O× ( 0 , T )) ≤ C � y 0 � L 2 Equivalent to 2 �� �� � ψ | t = 0 � 2 + ρ − 2 | γ i | 2 dx dt ≤ C | ψ | 2 dx dt � ˆ Ω × ( 0 , T ) O× ( 0 , T ) i = 1 for all ψ T , with � − ψ t − ψ xx = � 2 xx = − 1 µ ψ 1 O i i = 1 α i γ i , γ i t − γ i ψ | t = T = ψ T ( x ) , γ i | t = 0 = 0 , etc. True? E. Fernández-Cara Hierarchical control

  12. Hierarchical control The result Theorem Assume: large µ ρ 2 | y i , d | 2 dx dt < + ∞ , i = 1 , 2 , then: ρ such that, if � � ∃ ˆ Ω × ( 0 , T ) ˆ ∀ y 0 ∈ L 2 (Ω) ∃ null controls f ∈ L 2 ( O × ( 0 , T )) & Nash pairs ( v 1 ( f ) , v 2 ( f )) Idea of the proof: Energy estimates for the optimality system for ( y , φ 1 , φ 2 ) Energy and Carleman estimates for the adjoint system for ( ψ, γ 1 , γ 2 ) We do need: µ is large E. Fernández-Cara Hierarchical control

  13. Numerical analysis and results Computation of Nash equilibria FIRST, HOW CAN WE COMPUTE A NASH EQUILIBRIUM PAIR? (THE FOLLOWERS) The goal: f is given. Solve the optimality system y t − ∆ y = f 1 O − 1 µ φ 1 1 O 1 − 1 µ φ 2 1 O 2   i = 1 , 2 − φ i , t − φ i , xx = α i ( y − y i , d ) , y | t = 0 = y 0 ( x ) , φ i | t = T = 0 , etc.  Then take v i = 1 � µ φ i � O i × ( 0 , T ) For instance: ALG 1 - Fixed point ALG 1: ( v 1 , v 2 ) → y → ( φ 1 , φ 2 ) → ( v 1 , v 2 ) Also: Gradient, Conjugate gradient, etc. Standard approximations: P ℓ -Lagrange FEM’s, Implicit Euler schemes E. Fernández-Cara Hierarchical control

  14. Numerical analysis and results Computation of Nash equilibria A 2D numerical experiment with FreeFem++: http://www.freefem.org/ Figure: The final adapted mesh - Number of vertices: 1460 - Number of triangles: 2781 E. Fernández-Cara Hierarchical control

  15. Numerical analysis and results Computation of Nash equilibria Figure: The (fixed) leader control f (constant in time) E. Fernández-Cara Hierarchical control

  16. Numerical analysis and results Computation of Nash equilibria Figure: The target y 1 , d (constant in time) E. Fernández-Cara Hierarchical control

  17. Numerical analysis and results Computation of Nash equilibria Figure: The target y 2 , d (constant in time) E. Fernández-Cara Hierarchical control

  18. Numerical analysis and results Computation of Nash equilibria Figure: The state y at t = T - Result for y 0 = 0, µ = 0 . 15 i � v i , n + 1 − v i , n � / � v i , n + 1 � ≤ 10 − 5 Stopping test: � E. Fernández-Cara Hierarchical control

  19. Numerical analysis and results Computation of Nash equilibria Figure: The adjoint state φ 1 at t = 0 E. Fernández-Cara Hierarchical control

  20. Numerical analysis and results Computation of Nash equilibria Figure: The adjoint state φ 2 at t = 0 E. Fernández-Cara Hierarchical control

  21. Numerical analysis and results Computation of Nash equilibria Iterates versus µ : Figure: The number of iterates as a function of µ i � v i , n + 1 − v i , n � / � v i , n + 1 � ≤ 10 − 5 Stopping test: � E. Fernández-Cara Hierarchical control

Recommend


More recommend