CSE203B Convex Optimization Lecture 2 Convex Set CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1
Convex Optimization Problem: min π¦ π 0 π¦ Subject to π π π¦ β€ π π , π = 1, β― , π 1. π 0 π¦ is a convex function 2. For π π π¦ β€ π π , π = 1, β¦ , π π¦|π π (π¦) β€ π π , π = 1, β― , π is a convex set 2
Convex Optimization Problem: A. Convex Function Definition: π π π½π¦ + πΎπ§ β€ π½π π π¦ + πΎπ π π§ , βπ½ + πΎ = 1, π½, πΎ β₯ 0 B. Convex Set Definition: βπ¦, π§ β π· We have π½π¦ + πΎπ§ β π·, βπ½ + πΎ = 1, π½, πΎ β₯ 0 3
Chapter 2 Convex Set 1. Set Convexity and Specification 1. Convexity 2. Implicit vs. Explicit Enumeration 2. Convex Set Terms and Definitions 3. Separating Hyperplanes 4. Dual Cones 4
1. Set Convexity and Specification: Convexity A set π is convex if we have π½π¦ + πΎπ§ β π, βπ½ + πΎ = 1, π½, πΎ β₯ 0, βπ¦, π§ β π Examples: 5
1. Set Convexity and Specification: Convexity A set π is convex if we have π½π¦ + πΎπ§ β π, βπ½ + πΎ = 1, π½, πΎ β₯ 0, βπ¦, π§ β π Remark: 1. Most used sets in the class 1. Scalar set: π β π 2. Vector set: π β π π 3. Matrix set: π β π πΓπ 2. Set S is convex if every two points in S has the connected straight segment in the set. 3. For convex sets π 1 and π 2 : π 1 β© π 2 is also convex 6
1. Set Convexity and Specification: Set Specification via Implicit or Explicit Enumeration π π½ = {π¦|π΅π¦ β€ π, π¦ β π π } Implicit Expression Explicit Enumeration π πΉ = {π΅π¦ | π¦ β π π } Implicit Expression: Explicit Expression: Constraints Enumeration π π΅π¦ , π¦ β π π Min π π π¦ Min π Subject to π΅π¦ β€ π, π¦ β π π 7
1. Implicit vs Explicit Enumeration of Convex Set Implicit Expression π 1 = {π¦|π΅π¦ β€ π} Example: { π¦ | π΅π¦ β€ π } π¦ 1 +2π¦ 2 +3π¦ 3 β€ 4 Remark: Simultaneous linear 2π¦ 1 βπ¦ 2 β€ 3 constraints imply AND, π¦ 2 +π¦ 3 β€ 5 Intersection of the constraints π¦ 3 β€ 10 1 2 3 4 π¦ 1 2 β1 0 3 π¦ 2 π΅ = , π¦ = , π = 0 1 1 5 π¦ 3 0 0 1 10 8
1. Implicit vs Explicit Enumeration of Convex Set π 1 = {π¦|π΅π¦ β€ π, π¦ β π π } is a convex set Proof: Given two vectors π£, π€ β π 1 , π. π. π΅π£ β€ π , π΅π€ β€ π For π₯ = π 1 π£ + π 2 π€, βπ 1 + π 2 = 1, π 1 , π 2 β₯ 0 we have π΅π₯ β€ π. ( π΅π₯ = π 1 π΅π£ + π 2 π΅π€ β€ π 1 π + π 2 π = π) The inequality implies π₯ β π 1 By definition, set π 1 is convex. Remark: 1. Simultaneous linear constraints imply AND, Intersection of the constraints 2. Linear constraints constitute a convex set. 9
1. Specification of Convex Set: Implicit Expression Example: π π¦ (π’) β€ 1 for π’ β€ π π = π¦ β π π 3 } π₯βππ π π π¦ π’ = π¦ 1 cos π’ + π¦ 2 cos 2π’ + β― + π¦ π cos ππ’ 10
1. Implicit vs Explicit Enumeration of Convex Set Example: π 2 = π¦ π΅π¦ β₯ π, π¦ β π π } π 3 = π¦ π΅π¦ = π, π¦ β π π } 11
1. Specification of Set: Explicit Expression Explicit Enumeration π¦ π΅π¦ β€ π, π¦ β π π } π€π‘. π΅π¦ π¦ β π π } Example: 2 1 1 π = π΅ = 1 1 0 1 0 β1 12
1. Specification of Set: Explicit Expression Implicit and Explicit Conversion Example: x π΅π¦ β€ π, π¦ β π π } π€π‘ {ππ| 1 π π = 1, π β π + π } π 1 1 1 2 π 2 1 1 β1 β1 π¦ 1 1 0 1 π¦ 2 β€ π 3 1 β1 β1 3 β1 0 1 π 4 0 β1 1 13
1. Implicit vs Explicit Enumeration of Convex Set Remark: Implicit Expression: Constraints of the problem formulation Explicit Enumeration: Formulation of the objective function The interchange may not be trivial. min π 0 (ππ) min π 0 (π¦) π‘. π’. π½ π π β€ 1 π‘. π’. π΅π¦ β€ π π π¦ β π π π β π + Every vector π£ π in matrix π is a solution of n equations in constraint π΅π¦ β€ π π πππ£ππ’ππππ‘ ππππ π, π πππ‘π‘ππππ π π€ππ ππππππ‘ π€ππ π’ππ¦ πππππ’π‘. 14
1. Implicit vs Explicit Enumeration of Convex Set Explicit Enumeration π΅π¦ + π π π π¦ + π > 0, π¦ β π· 4 } (Projective Function) π 4 = π π π¦ + π π¨ π’ π¨ β π π , π’ > 0, π¨, π’ β π· 5 } (Perspective Function) π 5 = π 4 is convex if π· 4 is convex π 5 is convex if π· 5 is convex 15
1. Implicit vs Explicit Enumeration of Convex Set Statement: π 5 ππ‘ ππππ€ππ¦ . Proof: π¨ 1 π¨ 2 Given β π 5 , β π 5 , π’ 1 π’ 2 Let us set π¨ 3 = π½π¨ 1 + Ξ²π¨ 2 , π’ 3 = π½π’ 1 + πΎπ’ 2 , βπ½ + πΎ = 1, π½, πΎ β₯ 0 We then have π¨ 3 = π½π¨ 1 + Ξ²π¨ 2 π½π’ 1 π¨ 1 πΎπ’ 2 π¨ 2 = + π’ 3 π½π’ 1 + Ξ²π’ 2 π½π’ 1 + Ξ²π’ 2 π’ 1 π½π’ 1 + Ξ²π’ 2 π’ 2 π½π’ 1 πΎπ’ 2 Let π½ β² = , πΎ β² = π½π’ 1 + Ξ²π’ 2 π½π’ 1 + Ξ²π’ 2 (Note that π½ β² + πΎ β² = 1, π½ β² , πΎ β² β₯ 0), we have π¨ 3 = π½ β² π¨ 1 + πΎ β² π¨ 2 β π 5 π’ 3 π’ 1 π’ 2 Therefore, by definition π 5 is convex . 16
2. Convex Set Terms and Definitions Definitions: Affine Set, Cone, and Convex Hull Given π£ 1 , π£ 2 , β― , π£ π β π π , function π π£, π = π 1 π£ 1 + π 2 π£ 2 + β― + π π π£ π and two conditions 1. π 1 +π 2 + β― + π π = 1 2. π π β₯ 0 βπ i. f u, ΞΈ condition 1}: Affine set ii. f u, ΞΈ condition 2}: Cone iii. f u, ΞΈ conditions 1 and 2}: Convex hull πΉπ¦1: π 1 π£ 1 + π 2 π£ 2 = π£ 1 + π 2 (π£ 2 β π£ 1 ) πΉπ¦2: π 1 π£ 1 + π 2 π£ 2 + π 3 π£ 3 17
2. Sets and Definitions Definitions: Hyperplane and Half Spaces π¦ π π π¦ = π}, π β π π , π β π Hyperplane π¦ π π (π¦ β π¦ 0 ) = 0}, for any π¦ 0 β π π , π β π π , π β π or π¦ π π π¦ β€ π} π β π π , π β π Half Space π¦ π π (π¦ β π¦ 0 ) β€ 0} or π¦ 1 π¦ 2 β 0.5 πΉπ¦: π¦ π¦ 1 + π¦ 2 = 1} ππ π¦ [1,1] = 0} 0.5 π π¦ 1 , π¦ 2 = π¦ 1 + π¦ 2 β 1 π¦ π π (π¦ β π¦ 0 ) β€ 0}, π π = [1,1], π = 1, π¦ 0 = [2, β1] π π π normalize the expression: π 2 π¦ = π 2 18
2. Sets and Definitions: Hyperplanes Ex : 3 variables π¦|π π π¦ = π , π π = 1,1,1 , π = 6 Ex : 4 variables π¦|π π π¦ = π , π π = 1,1,1,1 , π = 6 (1) degrees of freedom : π β 1 π π . (2) all vectors ( π¦ β π§) are orthogonal to direction π , i.e. π π π¦ β π§ = 0, βπ¦, π§ in the hyperplane Proof: Exercise: Conceptually (visually) construct hyperplane. 19
2. Sets and Definitions: Hyperplanes Hyperplane : as an Equal potential of cost function 0 π¦ = π π π¦ minπ π¦ 1 π. π. 1, 2 π¦ 2 ππ 0 π¦ ππ¦ 1 = 1 ππ 0 π¦ ππ¦ 2 = 2 Vector π is the sensitivity or cost of vector π¦ 1 π¦ 2 20
2. Sets and Definitions Hyperplane : as a linearized constraint π π π¦ β€ π π¦ 1 π. π. 1, 2 π¦ 2 β€ 10 Remark : β’ Hyperplane is one key building block of convex optimization. (theory, algorithms, applications for machine learning, deep learning, β¦) β’ Each hyperplane separates the space into two half spaces. β’ If π β₯ π, π hyperplanes can separate the space into 2 π disjoint regions. 21
2. Sets and Definitions β €. Polyhedra (plural) : Poly (many) Hedron (face) π = π¦ π΅π¦ β€ π, π·π¦ = π} π π π 1 π 1 π π π 2 π 2 π΅ = C = β¦ β¦ π π π π π π 22
2. Sets and Definitions β €I. Matrix Space : Positive Semidefinite Cone β π π = π β π πβ¨π π = π π } Symmetric Matrix π = π β π π π βͺ° 0} π. π. π§ π ππ§ β₯ 0, βπ§ β‘ π + = π β π π π β» 0} π π. π. π§ π ππ§ > 0, βπ§ β 0 π ++ Ex: π = π¦ π§ 2 β π¦ β₯ 0, π¨ β₯ 0, π¦π¨ β₯ π§ 2 π¨ β π + π§ [π π]π π π = π 2 π¦ + π 2 π¨ + 2πππ§ β₯ 0, βπ, π β β 23
2. Sets and Definitions π¦ π§ 1 0 βπ¦ β1 π§ = π¦ 0 1 Proof : βπ¦ β1 π§ π¨ β π¦ β1 π§ 2 π§ π¨ 1 0 0 1 βπ¦ β1 π§ Let π = 1 0 1 We have π π π π π = [π π]π βπ π π πππ β1 π π = π π π βπ π¦ π¨ β π¦ β1 π§ 2 π β1 π 0 0 π 24
Recommend
More recommend