lecture 2 convex set
play

Lecture 2 Convex Set CK Cheng Dept. of Computer Science and - PowerPoint PPT Presentation

CSE203B Convex Optimization Lecture 2 Convex Set CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1 Convex Optimization Problem: min 0 Subject to , = 1,


  1. CSE203B Convex Optimization Lecture 2 Convex Set CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1

  2. Convex Optimization Problem: min 𝑦 𝑔 0 𝑦 Subject to 𝑔 𝑗 𝑦 ≀ 𝑐 𝑗 , 𝑗 = 1, β‹― , 𝑛 1. 𝑔 0 𝑦 is a convex function 2. For 𝑔 𝑗 𝑦 ≀ 𝑐 𝑗 , 𝑗 = 1, … , 𝑛 𝑦|𝑔 𝑗 (𝑦) ≀ 𝑐 𝑗 , 𝑗 = 1, β‹― , 𝑛 is a convex set 2

  3. Convex Optimization Problem: A. Convex Function Definition: 𝑔 𝑗 𝛽𝑦 + 𝛾𝑧 ≀ 𝛽𝑔 𝑗 𝑦 + 𝛾𝑔 𝑗 𝑧 , βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0 B. Convex Set Definition: βˆ€π‘¦, 𝑧 ∈ 𝐷 We have 𝛽𝑦 + 𝛾𝑧 ∈ 𝐷, βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0 3

  4. Chapter 2 Convex Set 1. Set Convexity and Specification 1. Convexity 2. Implicit vs. Explicit Enumeration 2. Convex Set Terms and Definitions 3. Separating Hyperplanes 4. Dual Cones 4

  5. 1. Set Convexity and Specification: Convexity A set 𝑇 is convex if we have 𝛽𝑦 + 𝛾𝑧 ∈ 𝑇, βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0, βˆ€π‘¦, 𝑧 ∈ 𝑇 Examples: 5

  6. 1. Set Convexity and Specification: Convexity A set 𝑇 is convex if we have 𝛽𝑦 + 𝛾𝑧 ∈ 𝑇, βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0, βˆ€π‘¦, 𝑧 ∈ 𝑇 Remark: 1. Most used sets in the class 1. Scalar set: 𝑇 βŠ‚ 𝑆 2. Vector set: 𝑇 βŠ‚ 𝑆 π‘œ 3. Matrix set: 𝑇 βŠ‚ 𝑆 π‘œΓ—π‘› 2. Set S is convex if every two points in S has the connected straight segment in the set. 3. For convex sets 𝑇 1 and 𝑇 2 : 𝑇 1 ∩ 𝑇 2 is also convex 6

  7. 1. Set Convexity and Specification: Set Specification via Implicit or Explicit Enumeration 𝑇 𝐽 = {𝑦|𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ } Implicit Expression Explicit Enumeration 𝑇 𝐹 = {𝐡𝑦 | 𝑦 ∈ 𝑆 π‘œ } Implicit Expression: Explicit Expression: Constraints Enumeration 𝑝 𝐡𝑦 , 𝑦 ∈ 𝑆 π‘œ Min 𝑔 𝑝 𝑦 Min 𝑔 Subject to 𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ 7

  8. 1. Implicit vs Explicit Enumeration of Convex Set Implicit Expression 𝑇 1 = {𝑦|𝐡𝑦 ≀ 𝑐} Example: { 𝑦 | 𝐡𝑦 ≀ 𝑐 } 𝑦 1 +2𝑦 2 +3𝑦 3 ≀ 4 Remark: Simultaneous linear 2𝑦 1 βˆ’π‘¦ 2 ≀ 3 constraints imply AND, 𝑦 2 +𝑦 3 ≀ 5 Intersection of the constraints 𝑦 3 ≀ 10 1 2 3 4 𝑦 1 2 βˆ’1 0 3 𝑦 2 𝐡 = , 𝑦 = , 𝑐 = 0 1 1 5 𝑦 3 0 0 1 10 8

  9. 1. Implicit vs Explicit Enumeration of Convex Set 𝑇 1 = {𝑦|𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ } is a convex set Proof: Given two vectors 𝑣, 𝑀 ∈ 𝑇 1 , 𝑗. 𝑓. 𝐡𝑣 ≀ 𝑐 , 𝐡𝑀 ≀ 𝑐 For π‘₯ = πœ„ 1 𝑣 + πœ„ 2 𝑀, βˆ€πœ„ 1 + πœ„ 2 = 1, πœ„ 1 , πœ„ 2 β‰₯ 0 we have 𝐡π‘₯ ≀ 𝑐. ( 𝐡π‘₯ = πœ„ 1 𝐡𝑣 + πœ„ 2 𝐡𝑀 ≀ πœ„ 1 𝑐 + πœ„ 2 𝑐 = 𝑐) The inequality implies π‘₯ ∈ 𝑇 1 By definition, set 𝑇 1 is convex. Remark: 1. Simultaneous linear constraints imply AND, Intersection of the constraints 2. Linear constraints constitute a convex set. 9

  10. 1. Specification of Convex Set: Implicit Expression Example: π‘ž 𝑦 (𝑒) ≀ 1 for 𝑒 ≀ 𝜌 𝑇 = 𝑦 ∈ 𝑆 𝑛 3 } π‘₯β„Žπ‘“π‘ π‘“ π‘ž 𝑦 𝑒 = 𝑦 1 cos 𝑒 + 𝑦 2 cos 2𝑒 + β‹― + 𝑦 𝑛 cos 𝑛𝑒 10

  11. 1. Implicit vs Explicit Enumeration of Convex Set Example: 𝑇 2 = 𝑦 𝐡𝑦 β‰₯ 𝑐, 𝑦 ∈ 𝑆 π‘œ } 𝑇 3 = 𝑦 𝐡𝑦 = 𝑐, 𝑦 ∈ 𝑆 π‘œ } 11

  12. 1. Specification of Set: Explicit Expression Explicit Enumeration 𝑦 𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ } 𝑀𝑑. 𝐡𝑦 𝑦 ∈ 𝑆 π‘œ } Example: 2 1 1 𝑐 = 𝐡 = 1 1 0 1 0 βˆ’1 12

  13. 1. Specification of Set: Explicit Expression Implicit and Explicit Conversion Example: x 𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ } 𝑀𝑑 {π‘‰πœ„| 1 π‘ˆ πœ„ = 1, πœ„ ∈ 𝑆 + 𝑛 } πœ„ 1 1 1 2 πœ„ 2 1 1 βˆ’1 βˆ’1 𝑦 1 1 0 1 𝑦 2 ≀ πœ„ 3 1 βˆ’1 βˆ’1 3 βˆ’1 0 1 πœ„ 4 0 βˆ’1 1 13

  14. 1. Implicit vs Explicit Enumeration of Convex Set Remark: Implicit Expression: Constraints of the problem formulation Explicit Enumeration: Formulation of the objective function The interchange may not be trivial. min 𝑔 0 (π‘‰πœ„) min 𝑔 0 (𝑦) 𝑑. 𝑒. 𝐽 π‘ˆ πœ„ ≀ 1 𝑑. 𝑒. 𝐡𝑦 ≀ 𝑐 𝑛 𝑦 ∈ 𝑆 π‘œ πœ„ ∈ 𝑆 + Every vector 𝑣 𝑗 in matrix 𝑉 is a solution of n equations in constraint 𝐡𝑦 ≀ 𝑐 π‘ž π‘“π‘Ÿπ‘£π‘π‘’π‘—π‘π‘œπ‘‘ 𝑑𝑝𝑛𝑐 π‘ž, π‘œ π‘žπ‘π‘‘π‘‘π‘—π‘π‘šπ‘“ π‘œ π‘€π‘π‘ π‘—π‘π‘π‘šπ‘“π‘‘ 𝑀𝑓𝑠𝑒𝑓𝑦 π‘žπ‘π‘—π‘œπ‘’π‘‘. 14

  15. 1. Implicit vs Explicit Enumeration of Convex Set Explicit Enumeration 𝐡𝑦 + 𝑐 𝑑 π‘ˆ 𝑦 + 𝑒 > 0, 𝑦 ∈ 𝐷 4 } (Projective Function) 𝑇 4 = 𝑑 π‘ˆ 𝑦 + 𝑒 𝑨 𝑒 𝑨 ∈ 𝑆 π‘œ , 𝑒 > 0, 𝑨, 𝑒 ∈ 𝐷 5 } (Perspective Function) 𝑇 5 = 𝑇 4 is convex if 𝐷 4 is convex 𝑇 5 is convex if 𝐷 5 is convex 15

  16. 1. Implicit vs Explicit Enumeration of Convex Set Statement: 𝑇 5 𝑗𝑑 π‘‘π‘π‘œπ‘€π‘“π‘¦ . Proof: 𝑨 1 𝑨 2 Given ∈ 𝑇 5 , ∈ 𝑇 5 , 𝑒 1 𝑒 2 Let us set 𝑨 3 = 𝛽𝑨 1 + β𝑨 2 , 𝑒 3 = 𝛽𝑒 1 + 𝛾𝑒 2 , βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0 We then have 𝑨 3 = 𝛽𝑨 1 + β𝑨 2 𝛽𝑒 1 𝑨 1 𝛾𝑒 2 𝑨 2 = + 𝑒 3 𝛽𝑒 1 + β𝑒 2 𝛽𝑒 1 + β𝑒 2 𝑒 1 𝛽𝑒 1 + β𝑒 2 𝑒 2 𝛽𝑒 1 𝛾𝑒 2 Let 𝛽 β€² = , 𝛾 β€² = 𝛽𝑒 1 + β𝑒 2 𝛽𝑒 1 + β𝑒 2 (Note that 𝛽 β€² + 𝛾 β€² = 1, 𝛽 β€² , 𝛾 β€² β‰₯ 0), we have 𝑨 3 = 𝛽 β€² 𝑨 1 + 𝛾 β€² 𝑨 2 ∈ 𝑇 5 𝑒 3 𝑒 1 𝑒 2 Therefore, by definition 𝑇 5 is convex . 16

  17. 2. Convex Set Terms and Definitions Definitions: Affine Set, Cone, and Convex Hull Given 𝑣 1 , 𝑣 2 , β‹― , 𝑣 𝑙 ∈ 𝑆 π‘œ , function 𝑔 𝑣, πœ„ = πœ„ 1 𝑣 1 + πœ„ 2 𝑣 2 + β‹― + πœ„ 𝑙 𝑣 𝑙 and two conditions 1. πœ„ 1 +πœ„ 2 + β‹― + πœ„ 𝑙 = 1 2. πœ„ 𝑗 β‰₯ 0 βˆ€π‘— i. f u, ΞΈ condition 1}: Affine set ii. f u, ΞΈ condition 2}: Cone iii. f u, ΞΈ conditions 1 and 2}: Convex hull 𝐹𝑦1: πœ„ 1 𝑣 1 + πœ„ 2 𝑣 2 = 𝑣 1 + πœ„ 2 (𝑣 2 βˆ’ 𝑣 1 ) 𝐹𝑦2: πœ„ 1 𝑣 1 + πœ„ 2 𝑣 2 + πœ„ 3 𝑣 3 17

  18. 2. Sets and Definitions Definitions: Hyperplane and Half Spaces 𝑦 𝑏 π‘ˆ 𝑦 = 𝑐}, 𝑏 ∈ 𝑆 π‘œ , 𝑐 ∈ 𝑆 Hyperplane 𝑦 𝑏 π‘ˆ (𝑦 βˆ’ 𝑦 0 ) = 0}, for any 𝑦 0 ∈ 𝑆 π‘œ , 𝑏 ∈ 𝑆 π‘œ , 𝑐 ∈ 𝑆 or 𝑦 𝑏 π‘ˆ 𝑦 ≀ 𝑐} 𝑏 ∈ 𝑆 π‘œ , 𝑐 ∈ 𝑆 Half Space 𝑦 𝑏 π‘ˆ (𝑦 βˆ’ 𝑦 0 ) ≀ 0} or 𝑦 1 𝑦 2 βˆ’ 0.5 𝐹𝑦: 𝑦 𝑦 1 + 𝑦 2 = 1} 𝑝𝑠 𝑦 [1,1] = 0} 0.5 𝑔 𝑦 1 , 𝑦 2 = 𝑦 1 + 𝑦 2 βˆ’ 1 𝑦 𝑏 π‘ˆ (𝑦 βˆ’ 𝑦 0 ) ≀ 0}, 𝑏 π‘ˆ = [1,1], 𝑐 = 1, 𝑦 0 = [2, βˆ’1] 𝑏 π‘ˆ 𝑐 normalize the expression: 𝑏 2 𝑦 = 𝑏 2 18

  19. 2. Sets and Definitions: Hyperplanes Ex : 3 variables 𝑦|𝑏 π‘ˆ 𝑦 = 𝑐 , 𝑏 π‘ˆ = 1,1,1 , 𝑐 = 6 Ex : 4 variables 𝑦|𝑏 π‘ˆ 𝑦 = 𝑐 , 𝑏 π‘ˆ = 1,1,1,1 , 𝑐 = 6 (1) degrees of freedom : π‘œ βˆ’ 1 𝑆 π‘œ . (2) all vectors ( 𝑦 βˆ’ 𝑧) are orthogonal to direction 𝑏 , i.e. 𝑏 π‘ˆ 𝑦 βˆ’ 𝑧 = 0, βˆ€π‘¦, 𝑧 in the hyperplane Proof: Exercise: Conceptually (visually) construct hyperplane. 19

  20. 2. Sets and Definitions: Hyperplanes Hyperplane : as an Equal potential of cost function 0 𝑦 = 𝑑 π‘ˆ 𝑦 min𝑔 𝑦 1 𝑓. 𝑕. 1, 2 𝑦 2 πœ–π‘” 0 𝑦 πœ–π‘¦ 1 = 1 πœ–π‘” 0 𝑦 πœ–π‘¦ 2 = 2 Vector 𝑑 is the sensitivity or cost of vector 𝑦 1 𝑦 2 20

  21. 2. Sets and Definitions Hyperplane : as a linearized constraint 𝑏 π‘ˆ 𝑦 ≀ 𝑐 𝑦 1 𝑓. 𝑕. 1, 2 𝑦 2 ≀ 10 Remark : β€’ Hyperplane is one key building block of convex optimization. (theory, algorithms, applications for machine learning, deep learning, …) β€’ Each hyperplane separates the space into two half spaces. β€’ If π‘œ β‰₯ π‘ž, π‘ž hyperplanes can separate the space into 2 π‘ž disjoint regions. 21

  22. 2. Sets and Definitions β…€. Polyhedra (plural) : Poly (many) Hedron (face) 𝑄 = 𝑦 𝐡𝑦 ≀ 𝑐, 𝐷𝑦 = 𝑒} π‘ˆ π‘ˆ 𝑑 1 𝑏 1 π‘ˆ π‘ˆ 𝑑 2 𝑏 2 𝐡 = C = … … π‘ˆ π‘ˆ 𝑑 π‘ž 𝑏 𝑛 22

  23. 2. Sets and Definitions β…€I. Matrix Space : Positive Semidefinite Cone β‘  𝑇 π‘œ = π‘Œ ∈ 𝑆 π‘œβ¨‰π‘œ π‘Œ = π‘Œ π‘ˆ } Symmetric Matrix π‘œ = π‘Œ ∈ 𝑇 π‘œ π‘Œ βͺ° 0} 𝑗. 𝑓. 𝑧 π‘ˆ π‘Œπ‘§ β‰₯ 0, βˆ€π‘§ β‘‘ 𝑇 + = π‘Œ ∈ 𝑇 π‘œ π‘Œ ≻ 0} π‘œ 𝑗. 𝑓. 𝑧 π‘ˆ π‘Œπ‘§ > 0, βˆ€π‘§ β‰  0 𝑇 ++ Ex: π‘Œ = 𝑦 𝑧 2 ⇔ 𝑦 β‰₯ 0, 𝑨 β‰₯ 0, 𝑦𝑨 β‰₯ 𝑧 2 𝑨 ∈ 𝑇 + 𝑧 [𝑏 𝑐]π‘Œ 𝑏 𝑐 = 𝑏 2 𝑦 + 𝑐 2 𝑨 + 2𝑏𝑐𝑧 β‰₯ 0, βˆ€π‘, 𝑐 ∈ ℝ 23

  24. 2. Sets and Definitions 𝑦 𝑧 1 0 βˆ’π‘¦ βˆ’1 𝑧 = 𝑦 0 1 Proof : βˆ’π‘¦ βˆ’1 𝑧 𝑨 βˆ’ 𝑦 βˆ’1 𝑧 2 𝑧 𝑨 1 0 0 1 βˆ’π‘¦ βˆ’1 𝑧 Let 𝑆 = 1 0 1 We have 𝑏 𝑐 π‘Œ 𝑏 𝑐 = [𝑏 𝑐]𝑆 βˆ’π‘ˆ 𝑆 π‘ˆ π‘Œπ‘†π‘† βˆ’1 𝑏 𝑐 = 𝑏 𝑐 𝑆 βˆ’π‘ˆ 𝑦 𝑨 βˆ’ 𝑦 βˆ’1 𝑧 2 𝑆 βˆ’1 𝑏 0 0 𝑐 24

Recommend


More recommend