lecture 1 combinatory logic and lambda calculus
play

Lecture 1: Combinatory Logic and Lambda Calculus H. Geuvers - PowerPoint PPT Presentation

Combinatory Logic Radboud University Lambda Calculus Lecture 1: Combinatory Logic and Lambda Calculus H. Geuvers Radboud University Nijmegen, NL 21st Estonian Winter School in Computer Science Winter 2016 H. Geuvers - Radboud Univ. EWSCS


  1. Combinatory Logic Radboud University Lambda Calculus Lecture 1: Combinatory Logic and Lambda Calculus H. Geuvers Radboud University Nijmegen, NL 21st Estonian Winter School in Computer Science Winter 2016 H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 1 / 39

  2. Combinatory Logic Radboud University Lambda Calculus Outline Combinatory Logic Lambda Calculus H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 2 / 39

  3. Combinatory Logic Radboud University Lambda Calculus Combinators Σ CL = { I , K , S , x , ′ , ) , ( , = } We introduce several simple grammars over Σ CL . • constant := I | K | S variable := x | variable ′ • term := constant | variable | ( term term ) • • formula := term = term Intuition: in ( F A ) the term F stands for a function and A for an argument H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 4 / 39

  4. Combinatory Logic Radboud University Lambda Calculus Combinatory Logic Axioms = ( I ) I P P K P Q = P ( K ) = P R ( Q R ) ( S ) S P Q R Deduction rules P = P P = Q ⇒ Q = P P = Q , Q = R ⇒ P = R P = Q ⇒ P R = Q R P = Q ⇒ R P = R Q Here P , Q , R denote arbitrary terms I P stands for ( I P ), K P Q for (( K P ) Q ) and S P Q R for ((( S P ) Q ) R ) In general P Q 1 . . . Q n ≡ ( .. (( P Q 1 ) Q 2 ) . . . Q n ) (association to the left) H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 5 / 39

  5. Combinatory Logic Radboud University Lambda Calculus Some conventions of Combinatory Logic Consider the term M P Q . • M P Q denotes ( M P ) Q and not! M ( P Q ) !! • First apply M to P and then the result is applied to Q . • You may view M P Q as the function M given two arguments, first P and then Q . • So an alternative writing for M P Q would be M ( P , Q ), but we will not write that! • M P Q can receive more arguments, e.g. P M , which is easy with the CL notation: M P Q ( P M ). • We write M = CL P or just M = P to denote that this equation is derivable from the axioms of Combinatory Logic using the derivation rules. • We write M ≡ P to denote that M and P are exactly the same terms. H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 6 / 39

  6. Combinatory Logic Radboud University Lambda Calculus Some magic with combinators Proposition. • Let D ≡ S I I . Then (doubling) D x = CL x x . • Let B ≡ S ( K S ) K . Then (composition) B f g x = CL f ( g x ) . • Let L ≡ D ( B D D ). Then (self-doubling, life!) L = CL L L . H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 7 / 39

  7. Combinatory Logic Radboud University Lambda Calculus Proof I Remember the Axioms I P = P ( I ) = ( K ) K P Q P S P Q R = P R ( Q R ) ( S ) Let D ≡ S I I . Then (doubling) D x = CL x x . Proof. D x ≡ S I I x = I x ( I x ) = x x . H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 8 / 39

  8. Combinatory Logic Radboud University Lambda Calculus Proof II Remember the Axioms = ( I ) I P P K P Q = P ( K ) = P R ( Q R ) ( S ) S P Q R Let B ≡ S ( K S ) K . Then (composition) B f g x = CL f ( g x ) . Proof. B f g x ≡ S ( K S ) K f g x = K S f ( K f ) g x = S ( K f ) g x = K f x ( g x ) = f ( g x ) . H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 9 / 39

  9. Combinatory Logic Radboud University Lambda Calculus Proof III Remember the Axioms = ( I ) I P P K P Q = P ( K ) S P Q R = P R ( Q R ) ( S ) Let L ≡ D ( B D D ). Then (self-doubling) L = CL L L . Proof. L ≡ D ( B D D ) = B D D ( B D D ) = D ( D ( B D D )) ≡ D L = L L . H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 10 / 39

  10. Combinatory Logic Radboud University Lambda Calculus Substitution Let M , L be terms and let x be a variable. The result of substitution of L for x in M , notation M [ x := L ] is defined by recursion on M . case for M definition of M [ x := L ] x L y y , provided x �≡ y C C (for C ∈ { I , K , S } ) P Q ( P [ x := L ]) ( Q [ x := L ]) Proposition If M = CL N, then M [ x := Q ] = CL N [ x := Q ] . Examples x I [ x := S ] ≡ S I . K I y x [ x := S ] ≡ K I y S . H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 11 / 39

  11. Combinatory Logic Radboud University Lambda Calculus First insight Combinatory Completeness Proposition. For every term P and variable x , there is a term F (where x does not occur in F ) such that F R = CL P [ x := R ] for every R . We denote this term F constructed in the proof as [ x ] P . Proof. Induction on the structure of P . Case 1. P ≡ x . Take [ x ] x ≡ I . Then ([ x ] x ) R ≡ I R = CL R = CL x [ x := R ] . Case 2. x / ∈ P . Take [ x ] P ≡ K P . Then indeed ([ x ] P ) R = CL K P R = CL P = CL P [ x := R ] . Case 3. P ≡ U V . Take [ x ]( U V ) ≡ S ([ x ] U ) ([ x ] V ). Then indeed ([ x ]( U V )) R ≡ S ([ x ] U ) ([ x ] V ) R = CL (([ x ] U ) R ) (([ x ] V ) R ) = CL ( U [ x := R ]) ( V [ x := R ]) = CL ( U V )[ x := R ] . � H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 12 / 39

  12. Combinatory Logic Radboud University Lambda Calculus Algorithms The previous proof gives the following algorithm P [ x ] P x I P with x / ∈ P K P U V S ([ x ] U ) ([ x ] V ) There are different possible algoritms. This is quite an efficient one. H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 13 / 39

  13. Combinatory Logic Radboud University Lambda Calculus Second insight Fixed Points Proposition. Every combinator has a fixed point: For every term P there exists a term X such that P X = CL X . Proof. Given P , define W := [ x ] P ( x x ) := W W . X Then X is a so called fixed point of P . X ≡ ([ x ] P ( x x )) W = CL P ( W W ) ≡ P X . Hence P X = CL X . L is a fixed point of D if one has L = D L = L L H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 14 / 39

  14. Combinatory Logic Radboud University Lambda Calculus Intended meaning of a λ -term The meaning of λ x . x 2 is the function → x 2 x �− that assigns to x the value x 2 ( x times x ) So according to this intended meaning we have ( λ x . x 2 )(6) = 6 2 = 36 . The parentheses around the 6 are usually not written: ( λ x . x 2 )6 = 36 Principal axiom is the β -eqality: ( λ x . M ) N = β M [ x := N ] H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 16 / 39

  15. Combinatory Logic Radboud University Lambda Calculus Language Alphabet: Σ = { x , ′ , ( , ) , ., λ, = } Language: the set of lambda terms, Λ: := x | variable ′ variable := variable | ( term term ) | ( λ variable . term ) term formula := term = term Theory (we often write just = for = β ) Axioms ( λ x . M ) N = β M [ x := N ] M = β M Rules M = β N ⇒ N = β M M = β N , N = β L ⇒ M = β L M = β N ⇒ ML = β NL M = β N ⇒ LM = β LN M = β N ⇒ λ x . M = β λ x . N H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 17 / 39

  16. Combinatory Logic Radboud University Lambda Calculus Substitution M M [ x := N ] x N y y ( P [ x := N ])( Q [ x := N ]) PQ λ x . P λ x . P λ y . P λ y . ( P [ x := N ]) where y �≡ x Application associates to the left P Q 1 . . . Q n ≡ ( . . . (( P Q 1 ) Q 2 ) . . . Q n ) . Abstraction associates to the right λ x 1 . . . x n . M ≡ ( λ x 1 . ( λ x 2 . ( . . . ( λ x n . M ) . . . )))) . Outer parentheses are often omitted. For example ( λ x . x ) y ≡ (( λ x . x ) y ) H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 18 / 39

  17. Combinatory Logic Radboud University Lambda Calculus Bound and free variables λ x . x and λ y . y acting on M both give M Renaming bound variables • In the term λ x . M , the ‘ λ x ’ binds the x in M . • Variables can occur free or bound. • We don’t want to distinguish between terms that only differ in their bound variables • We write M ≡ α N (or just M ≡ N ) if N arises from M by renaming bound variables Examples • λ x . x ≡ α λ y . y • λ x y . x ≡ α λ y x . y • λ x . ( λ x . x ) x ≡ α λ y . ( λ x . x ) y • ( λ x . ( λ y . x y )) x ≡ α ( λ z . ( λ y . z y )) x H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 19 / 39

  18. Combinatory Logic Radboud University Lambda Calculus Substution revisited • P [ x := N ] is only allowed if no free variable in N becomes bound after substitution. • Otherwise: rename bound variables first. ( λ x .λ y . x y ) ( y y ) = β ( λ y . x y )[ x := y y ] ( ≡ ?? λ y . y y y NO!! ) ≡ ( λ z . x z )[ x := y y ] ≡ λ z . y y z K y z ≡ ( λ x . ( λ y . x )) y z better: K y z ≡ ( λ x . ( λ y ′ . x )) y z = β ?? ( λ y . y ) z = β ( λ y ′ . y ) z = β z ?? = β y as it should. H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 20 / 39

  19. Combinatory Logic Radboud University Lambda Calculus Lambda Calculus subsumes Combinatory Logic I ≡ λ x . x ⇒ I M = β M K ≡ λ x y . x ⇒ K M P = β M S ≡ λ x y z . x z ( y z ) ⇒ S M P Q = β M Q ( P Q ) So we can define ( − ) λ : CL → Λ by ( M ) λ M λ x . x I K λ x y . x S λ x y z . x z ( y z ) P Q ( P ) λ ( Q ) λ Satisfying M = CL N ⇒ ( M ) λ = β ( N ) λ But not the other way around: S K I � = CL I , but in Λ we have ( S K I ) λ = β ( I ) λ . H. Geuvers - Radboud Univ. EWSCS 2016 CL and λ -calculus 21 / 39

Recommend


More recommend