leamer monoids and the huneke wiegand conjecture
play

Leamer Monoids and the Huneke-Wiegand Conjecture Roberto Carlos - PowerPoint PPT Presentation

The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Leamer Monoids and the Huneke-Wiegand Conjecture Roberto Carlos Pelayo Christopher ONeill Brian Wissman March 23, 2019 Roberto Carlos Pelayo


  1. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Leamer Monoids and the Huneke-Wiegand Conjecture Roberto Carlos Pelayo Christopher O’Neill Brian Wissman March 23, 2019 Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  2. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences The Huneke-Wiegand Conjecture In Tensor Products of Modules and the Rigidity of Tor : Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  3. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences The Huneke-Wiegand Conjecture In Tensor Products of Modules and the Rigidity of Tor : Huneke-Wiegand Conjecture (1994) Let R be a one-dimensional Gorenstein domain. Let M � = 0 be a finitely-generated R -module, which is not projective. Then the torsion submodule of M ⊗ R Hom R ( M , R ) is non-trivial. Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  4. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Numerical Semigroup Rings Let K be a field and Γ be a numerical semigroup. A numerical semigroup ring K [Γ] is the subring of K [ t ] given by � k s t s , s ∈ Γ where k s ∈ K . K [Γ] contains polynomials whose powers of t are in Γ. Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  5. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Numerical Semigroup Rings Let K be a field and Γ be a numerical semigroup. A numerical semigroup ring K [Γ] is the subring of K [ t ] given by � k s t s , s ∈ Γ where k s ∈ K . K [Γ] contains polynomials whose powers of t are in Γ. Goal: Use semigroup structure of Γ to prove the Huneke-Wiegand conjecture for certain ideals of K [Γ]. Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  6. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Arithmetic Sequences in Numerical Semigroups Setup: Γ = numerical semigroup, s �∈ Γ is a gap element. Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  7. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Arithmetic Sequences in Numerical Semigroups Setup: Γ = numerical semigroup, s �∈ Γ is a gap element. Arithmetic Sequences in Γ : Arithmetic sequences of length m and step-size s : ( n , m ) := { n , n + s , n + 2 s , . . . , n + ms } ⊂ Γ . Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  8. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Arithmetic Sequences in Numerical Semigroups Setup: Γ = numerical semigroup, s �∈ Γ is a gap element. Arithmetic Sequences in Γ : Arithmetic sequences of length m and step-size s : ( n , m ) := { n , n + s , n + 2 s , . . . , n + ms } ⊂ Γ . Arithmetic Sequence Addition : ( n 1 , m 1 ) + ( n 2 , m 2 ) = { n 1 , n 1 + s , . . . , n 1 + m 1 s } + { n 2 , n 2 + s , . . . , n 2 + m 2 s } = ( n 1 + n 2 , m 1 + m 2 ) . Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  9. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Arithmetic Sequences in Numerical Semigroups Setup: Γ = numerical semigroup, s �∈ Γ is a gap element. Arithmetic Sequences in Γ : Arithmetic sequences of length m and step-size s : ( n , m ) := { n , n + s , n + 2 s , . . . , n + ms } ⊂ Γ . Arithmetic Sequence Addition : ( n 1 , m 1 ) + ( n 2 , m 2 ) = { n 1 , n 1 + s , . . . , n 1 + m 1 s } + { n 2 , n 2 + s , . . . , n 2 + m 2 s } = ( n 1 + n 2 , m 1 + m 2 ) . ⇒ If ( n 1 , m 1 ) , ( n 2 , m 2 ) ⊂ Γ, then ( n 1 + n 2 , m 1 + m 2 ) ⊂ Γ. Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  10. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Leamer Monoids Definition Given a numerical monoid Γ and a gap element s ∈ Γ, the set S s Γ = { ( n , m ) : { n , n + s , . . . , n + ms } ⊂ Γ } with vector addition is called the Leamer monoid of Γ with step-size s . Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  11. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences Leamer Monoids Definition Given a numerical monoid Γ and a gap element s ∈ Γ, the set S s Γ = { ( n , m ) : { n , n + s , . . . , n + ms } ⊂ Γ } with vector addition is called the Leamer monoid of Γ with step-size s . Irreducible elements: An arithmetic sequence ( n , m ) ∈ S s Γ is irreducible if it cannot be written as the sum of two other non-trivial arithmetic sequences. Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  12. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences An Arithmetic Example Let Γ = � 7 , 10 � : Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  13. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences An Arithmetic Example Let Γ = � 7 , 10 � : � 7 , 10 � = { 0 , 7 , 10 , 14 , 17 , 20 , 21 , 24 , 27 , 28 , 30 , 31 , 34 , 35 , 37 , 38 , 40 , 41 , 42 , 44 , 45 , 47 , 48 , 49 , 50 , 51 , 52 , 54 , →} Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  14. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences An Arithmetic Example Let Γ = � 7 , 10 � : � 7 , 10 � = { 0 , 7 , 10 , 14 , 17 , 20 , 21 , 24 , 27 , 28 , 30 , 31 , 34 , 35 , 37 , 38 , 40 , 41 , 42 , 44 , 45 , 47 , 48 , 49 , 50 , 51 , 52 , 54 , →} And s = 3 �∈ Γ. Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  15. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences An Arithmetic Example Let Γ = � 7 , 10 � : � 7 , 10 � = { 0 , 7 , 10 , 14 , 17 , 20 , 21 , 24 , 27 , 28 , 30 , 31 , 34 , 35 , 37 , 38 , 40 , 41 , 42 , 44 , 45 , 47 , 48 , 49 , 50 , 51 , 52 , 54 , →} And s = 3 �∈ Γ. Examples: Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  16. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences An Arithmetic Example Let Γ = � 7 , 10 � : � 7 , 10 � = { 0 , 7 , 10 , 14 , 17 , 20 , 21 , 24 , 27 , 28 , 30 , 31 , 34 , 35 , 37 , 38 , 40 , 41 , 42 , 44 , 45 , 47 , 48 , 49 , 50 , 51 , 52 , 54 , →} And s = 3 �∈ Γ. Examples: Reducible: (28 , 3) = { 28 , 31 , 34 , 37 } = Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  17. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences An Arithmetic Example Let Γ = � 7 , 10 � : � 7 , 10 � = { 0 , 7 , 10 , 14 , 17 , 20 , 21 , 24 , 27 , 28 , 30 , 31 , 34 , 35 , 37 , 38 , 40 , 41 , 42 , 44 , 45 , 47 , 48 , 49 , 50 , 51 , 52 , 54 , →} And s = 3 �∈ Γ. Examples: Reducible: (28 , 3) = { 28 , 31 , 34 , 37 } = { 7 , 10 } + { 21 , 24 , 27 } = (7 , 1) + (21 , 2) Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  18. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences An Arithmetic Example Let Γ = � 7 , 10 � : � 7 , 10 � = { 0 , 7 , 10 , 14 , 17 , 20 , 21 , 24 , 27 , 28 , 30 , 31 , 34 , 35 , 37 , 38 , 40 , 41 , 42 , 44 , 45 , 47 , 48 , 49 , 50 , 51 , 52 , 54 , →} And s = 3 �∈ Γ. Examples: Reducible: (28 , 3) = { 28 , 31 , 34 , 37 } = { 7 , 10 } + { 21 , 24 , 27 } = (7 , 1) + (21 , 2) Irreducible: (57 , 2) = { 57 , 60 , 63 } Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  19. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences A Graphical Example We can plot S s Γ in N 2 ! Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  20. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences A Graphical Example We can plot S s Γ in N 2 ! Γ = � 7 , 10 � , s = 3 Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  21. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences A Graphical Example We can plot S s Γ in N 2 ! Γ = � 7 , 10 � , s = 3 Examples: (28 , 3) = (7 , 1) + (21 , 2) is reducible (57 , 2) is irreducible Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

  22. The Huneke-Wiegand Conjecture and Leamer Monoids Finding Irreducible Arithmetic Sequences What Does This Have to Do with the HW Conjecture? Roberto Carlos Pelayo Christopher O’Neill Brian Wissman Leamer Monoids and the Huneke-Wiegand Conjecture

Recommend


More recommend