Langevin equation equation for for a a system system Langevin nonlinearly coupled coupled to a to a heat heat bath bath nonlinearly Mykhaylo Evstigneev Evstigneev Mykhaylo BEMOD 12 BEMOD 12 MPIPKS, Dresden MPIPKS, Dresden March 27, 2012 March 27, 2012
Motivation Motivation • Molecular dynamics: • Stochastic dynamics: How ? 10 N atoms of the heat bath, atoms of the heat bath N < 10 not simulated explicitly n atoms of the system, Langevin equations of motion: ~ n ~ 1…10 p f x x x x t ( ) ( ) ( , ) t Equations of motion: Forces: p f x F x X ( ) ( , ) system: • renormalized P g X G x X bath: ( ) ( , ) • dissipative • random
Langevin simulation simulation Langevin • Langevin equation ~ p f x x x t x t ( ) ( ) ( ) ( , ) t t t • Noise x t ( , ) 0 – Unbiased: t x t x s k T x t s ( , ) ( , ) 2 ( ) ( ) – Gaussian and white: t s B t n n v v [ 1 / 2 ] [ 1 / 2 ] ~ n n n n m f x x v r [ ] [ 1 ] [ 1 / 2 ] [ ] ( ) ( ) • Implementation: t n n n x [ 1 ] x [ ] v [ 1 / 2 ] t [ n r ] with Gaussian random numbers having the statistical properties: n n k n r r r k T x t [ ] [ ] [ ] [ ] 0 ; 2 ( ) / B nk
Plan of the derivation Plan of the derivation • Step 1. From the heat bath equations of motion P g X G x X ( ) ( , ) approximately evaluate X t X x t t u t ( ) ([ ( ' )]) ( ) (systematic part + noise) • Step 2. Plug the result back into the system’s equations of motion: p f x F x X f x F x X x u t ( ) ( , ) ( ) , ([ ]) ( ) F x X x t u t , ([ ], ) ( ) • Step 3. Linearize to single out force renormalization, dissipation, and noise effects • Step 4. Take the limit of zero noise correlation time
Standard recipe Standard recipe • Initial microscopic equations: p f x F x X P g X G x X ( ) ( , ) ; ( ) ( , ) ~ p f x x x t x t ( ) ( ) ( ) ( , ) • Langevin equation: t t Bogoliubov, 1945; Magalinskii, 1959; Zwanzig, 1973: F x X ~ , f x f x F x X u x 0 – Renormalized force: ( ) ( ) , ( ) 0 X u u u x G x X 0 where ( ) ( , ) 0 k T B – Thermal noise: F x X , x t u t u u t t ds u u s 0 ( , ) ( ) , ( 0 ) ( ) 2 ( ) ( 0 ) ( ) X 0 0 0 – Dissipation matrix: u u s F x X ( 0 ) ( ) F x X ( , ) ( , ) s t x 0 ds 0 0 ( ) X X k T B 0
New recipe New recipe • Initial microscopic equations: p f x F x X P g X G x X ( ) ( , ) ; ( ) ( , ) ~ p f x x x t x t ( ) ( ) ( ) ( , ) • Langevin equation: t t M.E. and P.Reimann, Phys. Rev. B 82 , 224303 (2010): ~ f x f x F x X u x ( ) ( ) , ( ) – Renormalized force: 0 u u u x G x X 0 ( ) ( , ) where 0 k T B – Thermal noise: F x X u x t , ( , ) x t u t u u t t ds u u s 0 ( , ) ( ) , ( 0 ) ( ) 2 ( ) ( 0 ) ( ) X 0 0 0 – Dissipation matrix: u u s F x X u x ( 0 ) ( ) F x X u x ( , ( )) ( , ( )) s t x 0 ds 0 0 ( ) X X k T B 0
Numerical test #1 Numerical test #1 • Model: m x W x X W (a) 10 ( ) ( ) W (b) 20 ( ) W x x 12 x 6 ( ) ( / ) 2 ( / ) 2.0 (a) M X X W x X X t 2.0 ( ) ( ) 1.8 1.6 1.8 1.4 1.02 1.2 1.0 1.6 k T k T 50 100 150 1.00 x / X u B dt u u t B 2 0 ; ; ( 0 ) ( ) 1.4 0 2 0 0.98 0 980 990 1000 0 1.2 ~ 1.0 m x f x x x x t • Langevin equation: ( ) ( ) ( , ) 0.8 0 200 400 600 800 1000 t [ps] 2 W x u x ( ) ~ x f x W x u x ( ) ( ) ( ) 2.4 2.4 (b) 2.2 u x W x 2.0 ( ) ( ) / 2.2 1.8 1.6 1.4 2.0 1.2 1.10 1.0 1.08 1.8 50 100 150 200 1.06 pN nm nm 1.04 x / 4 ; 0 . 5 • Parameters: 1.02 1.6 1.00 0.98 0.96 m yg M yg 1.4 0.94 200 ; 100 0.92 980 990 1000 1.2 X X ( 0 ) 0 ; ( 0 ) 0 1.0 0.8 x x m s 0 200 400 600 800 1000 ( 0 ) 4 ; ( 0 ) 10 / t [ps] T 0
Numerical test #2 Numerical test #2 • Equations of motion: m r W r R ( ) i i M R R R W r R R Ξ R t 0 ( ) ( ) ( , ) i i i i i i i ~ • Langevin equation: m r f r r r r t ( ) ( ) ( , ) m M 200 yg ; 100 yg W r r 12 r 6 ( ) ( / ) 2 ( / ) • Parameters: k T γ κ M 5 pN nm ; 2 pN nm / 10 B σ a . 2 0 4 nm 72 / 0 1.6 1.4 3.5 2 /s] t desorption [ s] 1.2 -3 x D [mm 1.0 3.0 0.8 0.6 10 0.4 2.5 0.2 0.0 0 100 200 300 400 500 0 100 200 300 400 500 / 0 / 0
Conclusions Conclusions • Langevin equation can save you a great deal of computational effort • Langevin equation is an approximation valid for – weak system-bath coupling – large time-scale separation between the (slow) system and (fast) bath degrees of freedom • The new recipe for deriving Langevin equation improves its accuracy and increases its validity range by about an order of magnitude with respect to the system-bath coupling strength • More details in M.E. and P.Reimann, Phys. Rev. B 82 , 224303 (2010) • Acknowledgements Deutsche Forschungsgemeinschaft (SFB 613) and ESF programs NATRIBO and FANAS (project Nanoparma)
Recommend
More recommend