Lambda-N and Sigma-N interactions from 2+1 lattice QCD with almost realistic masses H. Nemura 1 , for HAL QCD Collaboration S. Aoki 2 , T. Doi 3 , F. Etminan 4 , S. Gongyo 5 , T. Hatsuda 3 , Y. Ikeda 6 , T. Inoue 7 , T. Iritani 8 , N. Ishii 6 , D. Kawai 2 , T. Miyamoto 2 , K. Murano 6 , and K. Sasaki 2 , 1 University of Tsukuba, 2 Kyoto University, 3 RIKEN, 4 University of Birjand, 5 University of Tours, 6 Osaka University, 7 Nihon University, 8 Stony Brook University
Outline Introduction Brief introduction of HAL QCD method Importance of LN-SN tensor force for hypernuclei Effective block algorithm for various baryon- baryon channels, HN, Comput.Phys.Commun.207,91(2016) [arXiv:1510.00903(hep-lat)] Preliminary results of LN-SN potentials at nearly physical point LN-SN(I=1/2), central and tensor potentials SN(I=3/2), central and tensor potentials Summary
Plan of research QCD J-PARC, JLab, GSI, MAMI, ... Baryon interaction YN scattering, hypernuclei Structure and reaction of (hyper)nuclei Equation of State (EoS) of nuclear matter A = 3 A = 4 A = 5 Neutron star and pnn , pn ppnn supernova ppn
What is realistic picture of hypernuclei? B (total)= B ( 4 He)+ B Λ ( Λ 5 He) A conventional picture: B (total) = B ( 4 He)+ B Λ ( Λ 5 He) = 28+3 MeV. A (probably realistic) picture: B (total) = ( B ( 4 He) −∆ E c )+( B Λ ( Λ 5 He)+ ∆ E c ) = ??+?? MeV.
Comparison between d=p+n and core+Y 3 S 3 D L =0 L =2 p n p n α ' α Λ Σ Phase shif 〈 T S 〉 〈 T D 〉 〈 V NN (central) 〉 〈 V NN (tensor) 〉 〈 V NN (LS) 〉 (MeV) (MeV) (MeV) (MeV) (MeV) ( なるか ?) AV8 8.57 11.31 − 4.46 − 16.64 − 1.02 G3RS 10.84 5.64 − 7.29 − 11.46 0.00 〈 V YN ( のこり ) 〉 〈 T Y -c 〉 Λ 〈 T Y -c 〉 Σ + ∆ 〈 H c 〉 2 〈 V Λ N- Σ N (tensor) 〉 5 He 9.11 3.88+4.68 − 0.86 − 19.51 Λ 4 H * 0.01 5.30 2.43+2.02 − 10.67 Λ 4 H 7.12 2.94+2.16 − 5.05 − 9.22 Λ HN, Akaishi, Suzuki, PRL89, 142504 (2002).
Rearrangement effect of Λ 5 He HN, Akaishi, Suzuki, PRL89, 142504 (2002). Phase shif Carlson Nogga ( なるか ?) m i c 2 m i − T C M ∑ 2 A A − 1 A − 1 2 p i H = ∑ N N ∑ N Y = H core H Y − core , v i v i j Y i = 1 i j i = 1 − ∑ p i 2 A − 1 2 A − 1 A − 1 p i H core = ∑ i = 1 ∑ N N = T core V N N . v i j 2 m N 2 A − 1 m N i = 1 i j
What is realistic picture of hypernuclei? B (total)= B ( 4 He)+ B Λ ( Λ 5 He) A conventional picture: B (total) = B ( 4 He)+ B Λ ( Λ 5 He) = 28+3 MeV. A (probably realistic) picture: B (total) = ( B ( 4 He) −∆ E c )+( B Λ ( Λ 5 He)+ ∆ E c ) = 24+7 MeV.
Lattice QCD calculation p n
Multi-hadron on lattice i) basic procedure: asymptotic region --> phase shift ii) HAL's procedure: interacting region --> potential
Formulation Lattice QCD simulation L =− 1 a G a A a a q − m i ∂ − g t 4 G q q q q ,q ,U 〉= ∫ dU d − S q,q,U O 〈 O q dq e q ,q ,U = ∫ dU det D U e − S U U O D − 1 U N 1 N ∑ − 1 U i O D = lim N ∞ i = 1 t t 0 〉 p 〈 p p
Formulation Lattice QCD simulation L =− 1 a G a A a a q − m i ∂ − g t 4 G q q q q ,q ,U 〉= ∫ dU d − S q,q,U O 〈 O q dq e q ,q ,U = ∫ dU det D U e − S U U O D − 1 U N 1 N ∑ − 1 U i O D = lim N ∞ i = 1 t t 0 〉 pn 〈 pn pn
Multi-hadron on lattice Lattice QCD simulation L =− 1 a G a A a a q − m i ∂ − g t 4 G q q q q ,q ,U 〉= ∫ dU d − S q,q,U O 〈 O q dq e q ,q ,U = ∫ dU det D U e − S U U O D − 1 U N 1 N ∑ − 1 U i O D = lim N ∞ i = 1 t t 0 〉 p 〈 p p
Multi-hadron on lattice i) basic procedure: asymptotic region (or temporal correlation) --> scattering energy 2 E = k --> phase shift 2 2 2 = 1 2 k c o t 0 k = Z 00 1 ; k L / 2 O k L a 0 1 1 ℜ s 3 4 ∑ 2 = Z 00 1 ;q 2 − q 2 s n 2 3 n ∈ Z Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).
Multi-hadron on lattice i) basic procedure: An example of asymptotic region Luscher’s formula (or temporal correlation) --> scattering energy 2 E = k --> phase shift 2 2 2 = 1 2 k c o t 0 k = Z 00 1 ; k L / 2 O k L a 0 1 1 ℜ s 3 4 ∑ 2 = Z 00 1 ;q 2 − q 2 s n 2 3 n ∈ Z Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).
Multi-hadron on lattice Lattice QCD simulation L =− 1 a G a A a a q − m i ∂ − g t 4 G q q q q ,q ,U 〉= ∫ dU d − S q,q,U O 〈 O q dq e q ,q ,U = ∫ dU det D U e − S U U O D − 1 U JM F r,t − t 0 , N 1 N ∑ − 1 U i O D = lim N ∞ i = 1 r ,t t 0 〉 〈 p p Calculate the scattering state
Multi-hadron on lattice ii) HAL’s procedure: make better use of the lattice output ! (wave function) interacting region --> potential Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010). NOTE: > Potential is not a direct experimental observable. > Potential is a useful tool to give (and to reproduce) the physical quantities. (e.g., phase shift) ....
Multi-hadron on lattice ii) HAL’s procedure: make better use of the lattice output ! (wave function) interacting region --> potential Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010). => > Phase shift > Nuclear many-body problems
The potential is obtained at moderately large imaginary time; no single state saturation is required.
The potential is obtained at moderately large imaginary time; no single state saturation is required.
The potential is obtained at moderately large imaginary time; no single state saturation is required.
An improved recipe for NY potential: cf. Ishii (HAL QCD), PLB712 (2012) 437. Take account of not only the spatial correla- tion but also the temporal correlation in terms of the R-correlator: − 1 r ' =− ∂ 3 r ' U r ' R t, r ∫ d 2 R t, r, ∂ t R t, r 2 ∇ 2 k 2 R t , r U r, r' = V N Y r, ∇ r − r' A general expression of the potential: V N Y = V 0 r V r N ⋅ Y V T r S 12 V LS r L ⋅ S V ALS r L ⋅ 2 S − O ∇
Determination of baryon-baryon potentials at nearly physical point
Effective block algorithm for various baryon-baryon correlators HN, CPC207,91(2016), arXiv:1510.00903(hep-lat) Numerical cost (# of iterative operations) in this algorithm 2 N 2 N 2 N N c 2 N = 370 2 N c 2 N c 2 N c 1 N c In an intermediate step: B × N u ! N d ! N s ! × 2 N N 0 − B = 3456 N c ! N In a naïve approach: 2B × N u ! N d ! N s ! = 3,981,312 N c ! N
Generalization to the various baryon-baryon channels strangeness S=0 to -4 systems Make better use of the computing resources! HN, CPC 207, 91(2016) [arXiv:1510.00903[hep-lat]], (See also arXiv:1604.08346)
Almost physical point lattice QCD calculation using N F =2+1 clover fermion + Iwasaki gauge action APE-Stout smearing ( ρ =0.1, n stout =6) Non-perturbatively O(a) improved Wilson Clover action at β =1.82 on 96 3 × 96 lattice 1/ a = 2.3 GeV ( a = 0.085 fm) Volume: 96 4 → (8fm) 4 m π =145MeV, m K =525MeV DDHMC(ud) and UVPHMC(s) with preconditioning K.-I.Ishikawa, et al., PoS LAT2015, 075; arXiv:1511.09222 [hep-lat]. NBS wf is measured using wall quark source with Coulomb gauge fixing, spatial PBD and temporal DBC; #stat=207configs x 4rotation x Nsrc (Nsrc=4 → 20 → 52 → 96 (2015FY+))
LN-SN potentials at nearly physical point The methodology for coupled-channel V is based on: Aoki, et al., Proc.Japan Acad. B87 (2011) 509. Sasaki, et al., PTEP 2015 (2015) no.11, 113B01. Ishii, et al., JPS meeting, March (2016). #stat: (this/scheduled in FY2015+) < 0.05 (==>0.2) 0.54 N − N I = 1 / 2 1 S 0 3 S 1 − 3 D 1 3 S 1 − 3 D 1 V C V C V T N I = 3 / 2 1 S 0 3 S 1 − 3 D 1 3 S 1 − 3 D 1 V C V C V T
Recommend
More recommend