lambda n and sigma n interactions from 2 1 lattice qcd
play

Lambda-N and Sigma-N interactions from 2+1 lattice QCD with almost - PowerPoint PPT Presentation

Lambda-N and Sigma-N interactions from 2+1 lattice QCD with almost realistic masses H. Nemura 1 , for HAL QCD Collaboration S. Aoki 2 , T. Doi 3 , F. Etminan 4 , S. Gongyo 5 , T. Hatsuda 3 , Y. Ikeda 6 , T. Inoue 7 , T. Iritani 8 , N. Ishii 6 , D.


  1. Lambda-N and Sigma-N interactions from 2+1 lattice QCD with almost realistic masses H. Nemura 1 , for HAL QCD Collaboration S. Aoki 2 , T. Doi 3 , F. Etminan 4 , S. Gongyo 5 , T. Hatsuda 3 , Y. Ikeda 6 , T. Inoue 7 , T. Iritani 8 , N. Ishii 6 , D. Kawai 2 , T. Miyamoto 2 , K. Murano 6 , and K. Sasaki 2 , 1 University of Tsukuba, 2 Kyoto University, 3 RIKEN, 4 University of Birjand, 5 University of Tours, 6 Osaka University, 7 Nihon University, 8 Stony Brook University

  2. Outline  Introduction  Brief introduction of HAL QCD method  Importance of LN-SN tensor force for hypernuclei  Effective block algorithm for various baryon- baryon channels, HN, Comput.Phys.Commun.207,91(2016) [arXiv:1510.00903(hep-lat)]  Preliminary results of LN-SN potentials at nearly physical point  LN-SN(I=1/2), central and tensor potentials  SN(I=3/2), central and tensor potentials  Summary

  3. Plan of research QCD J-PARC, JLab, GSI, MAMI, ... Baryon interaction YN scattering, hypernuclei Structure and reaction of (hyper)nuclei Equation of State (EoS) of nuclear matter A = 3 A = 4 A = 5 Neutron star and pnn  , pn  ppnn  supernova ppn 

  4. What is realistic picture of hypernuclei?  B (total)= B ( 4 He)+ B Λ ( Λ 5 He)  A conventional picture: B (total) = B ( 4 He)+ B Λ ( Λ 5 He) = 28+3 MeV.  A (probably realistic) picture: B (total) = ( B ( 4 He) −∆ E c )+( B Λ ( Λ 5 He)+ ∆ E c ) = ??+?? MeV.

  5. Comparison between d=p+n and core+Y 3 S 3 D L =0 L =2 p n p n α ' α Λ Σ  Phase shif 〈 T S 〉 〈 T D 〉 〈 V NN (central) 〉 〈 V NN (tensor) 〉 〈 V NN (LS) 〉 (MeV) (MeV) (MeV) (MeV) (MeV)  ( なるか ?) AV8 8.57 11.31 − 4.46 − 16.64 − 1.02 G3RS 10.84 5.64 − 7.29 − 11.46 0.00  〈 V YN ( のこり ) 〉 〈 T Y -c 〉 Λ 〈 T Y -c 〉 Σ + ∆ 〈 H c 〉 2 〈 V Λ N- Σ N (tensor) 〉 5 He 9.11 3.88+4.68 − 0.86 − 19.51 Λ 4 H * 0.01 5.30 2.43+2.02 − 10.67 Λ 4 H 7.12 2.94+2.16 − 5.05 − 9.22 Λ HN, Akaishi, Suzuki, PRL89, 142504 (2002).

  6. Rearrangement effect of Λ 5 He HN, Akaishi, Suzuki, PRL89, 142504 (2002).  Phase shif  Carlson  Nogga   ( なるか ?)    m i c 2 m i  − T C M  ∑ 2 A A − 1 A − 1 2  p i H = ∑  N N   ∑  N Y  = H core  H Y − core , v i v i j Y i = 1 i  j i = 1 −  ∑ p i  2 A − 1 2 A − 1 A − 1 p i H core = ∑ i = 1  ∑  N N  = T core  V N N . v i j 2 m N 2  A − 1  m N i = 1 i  j

  7. What is realistic picture of hypernuclei?  B (total)= B ( 4 He)+ B Λ ( Λ 5 He)  A conventional picture: B (total) = B ( 4 He)+ B Λ ( Λ 5 He) = 28+3 MeV.  A (probably realistic) picture: B (total) = ( B ( 4 He) −∆ E c )+( B Λ ( Λ 5 He)+ ∆ E c ) = 24+7 MeV.

  8. Lattice QCD calculation p n

  9. Multi-hadron on lattice i) basic procedure: asymptotic region --> phase shift ii) HAL's procedure: interacting region --> potential

  10. Formulation Lattice QCD simulation L =− 1 a G a A  a   a  q − m    i ∂  − g t 4 G  q  q q q ,q ,U 〉= ∫ dU d  − S  q,q,U  O  〈 O  q dq e q ,q ,U  = ∫ dU det D  U  e − S U  U  O  D − 1  U  N 1 N ∑ − 1  U i  O  D = lim N  ∞ i = 1  t   t 0 〉 p 〈 p p

  11. Formulation Lattice QCD simulation L =− 1 a G a A  a   a  q − m    i ∂  − g t 4 G  q  q q q ,q ,U 〉= ∫ dU d  − S  q,q,U  O  〈 O  q dq e q ,q ,U  = ∫ dU det D  U  e − S U  U  O  D − 1  U  N 1 N ∑ − 1  U i  O  D = lim N  ∞ i = 1  t   t 0 〉 pn 〈 pn pn

  12. Multi-hadron on lattice Lattice QCD simulation L =− 1 a G a A  a   a  q − m    i ∂  − g t 4 G  q  q q q ,q ,U 〉= ∫ dU d  − S  q,q,U  O  〈 O  q dq e q ,q ,U  = ∫ dU det D  U  e − S U  U  O  D − 1  U  N 1 N ∑ − 1  U i  O  D = lim N  ∞ i = 1  t   t 0 〉 p  〈 p  p 

  13. Multi-hadron on lattice i) basic procedure: asymptotic region (or temporal correlation) --> scattering energy 2 E = k --> phase shift 2  2 2 = 1 2  k c o t  0  k = Z 00  1 ;  k L / 2   O  k   L a 0 1 1 ℜ s  3  4  ∑ 2 = Z 00  1 ;q 2 − q 2  s  n 2 3 n ∈ Z  Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).

  14. Multi-hadron on lattice i) basic procedure: An example of asymptotic region Luscher’s formula (or temporal correlation) --> scattering energy 2 E = k --> phase shift 2  2 2 = 1 2  k c o t  0  k = Z 00  1 ;  k L / 2   O  k   L a 0 1 1 ℜ s  3  4  ∑ 2 = Z 00  1 ;q 2 − q 2  s  n 2 3 n ∈ Z  Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).

  15. Multi-hadron on lattice Lattice QCD simulation L =− 1 a G a A  a   a  q − m    i ∂  − g t 4 G  q  q q q ,q ,U 〉= ∫ dU d  − S  q,q,U  O  〈 O  q dq e q ,q ,U  = ∫ dU det D  U  e − S U  U  O  D − 1  U   JM   F  r,t − t 0  , N 1 N ∑ − 1  U i  O  D = lim N  ∞ i = 1 r ,t   t 0 〉  〈  p  p  Calculate the scattering state

  16. Multi-hadron on lattice ii) HAL’s procedure: make better use of the lattice output ! (wave function) interacting region --> potential Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010). NOTE: > Potential is not a direct experimental observable. > Potential is a useful tool to give (and to reproduce) the physical quantities. (e.g., phase shift) ....

  17. Multi-hadron on lattice ii) HAL’s procedure: make better use of the lattice output ! (wave function) interacting region --> potential Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010). => > Phase shift > Nuclear many-body problems

  18. The potential is obtained at moderately large imaginary time; no single state saturation is required.

  19. The potential is obtained at moderately large imaginary time; no single state saturation is required.

  20. The potential is obtained at moderately large imaginary time; no single state saturation is required.

  21. An improved recipe for NY potential:  cf. Ishii (HAL QCD), PLB712 (2012) 437.  Take account of not only the spatial correla- tion but also the temporal correlation in terms of the R-correlator: − 1 r ' =− ∂ 3 r ' U  r '  R  t,  r  ∫ d 2 R  t,  r,  ∂ t R  t,  r  2  ∇ 2  k 2  R  t ,  r  U  r,  r' = V N Y  r, ∇ r − r'   A general expression of the potential: V N Y = V 0  r  V   r   N ⋅  Y   V T  r  S 12  V LS  r  L ⋅ S    V ALS  r  L ⋅ 2  S −  O ∇

  22. Determination of baryon-baryon potentials at nearly physical point

  23. Effective block algorithm for various baryon-baryon correlators HN, CPC207,91(2016), arXiv:1510.00903(hep-lat) Numerical cost (# of iterative operations) in this algorithm 2 N  2 N  2 N   N c 2 N  = 370 2  N c 2  N c 2  N c 1  N c In an intermediate step: B × N u ! N d ! N s ! × 2 N   N  0 − B = 3456  N c ! N   In a naïve approach: 2B × N u ! N d ! N s ! = 3,981,312  N c ! N  

  24. Generalization to the various baryon-baryon channels strangeness S=0 to -4 systems Make better use of the computing resources! HN, CPC 207, 91(2016) [arXiv:1510.00903[hep-lat]], (See also arXiv:1604.08346)

  25. Almost physical point lattice QCD calculation using N F =2+1 clover fermion + Iwasaki gauge action  APE-Stout smearing ( ρ =0.1, n stout =6)  Non-perturbatively O(a) improved Wilson Clover action at β =1.82 on 96 3 × 96 lattice  1/ a = 2.3 GeV ( a = 0.085 fm)  Volume: 96 4 → (8fm) 4  m π =145MeV, m K =525MeV  DDHMC(ud) and UVPHMC(s) with preconditioning  K.-I.Ishikawa, et al., PoS LAT2015, 075; arXiv:1511.09222 [hep-lat].  NBS wf is measured using wall quark source with Coulomb gauge fixing, spatial PBD and temporal DBC; #stat=207configs x 4rotation x Nsrc (Nsrc=4 → 20 → 52 → 96 (2015FY+))

  26. LN-SN potentials at nearly physical point The methodology for coupled-channel V is based on: Aoki, et al., Proc.Japan Acad. B87 (2011) 509. Sasaki, et al., PTEP 2015 (2015) no.11, 113B01. Ishii, et al., JPS meeting, March (2016). #stat: (this/scheduled in FY2015+) < 0.05 (==>0.2) 0.54  N − N  I = 1 / 2  1 S 0  3 S 1 − 3 D 1  3 S 1 − 3 D 1  V C  V C  V T   N  I = 3 / 2  1 S 0  3 S 1 − 3 D 1  3 S 1 − 3 D 1  V C  V C  V T 

Recommend


More recommend