lagrangian mean curvature flow
play

Lagrangian mean curvature flow Ildefonso Castro (joint work with - PowerPoint PPT Presentation

Lagrangian mean curvature flow Ildefonso Castro (joint work with Ana M. Lerma) Departamento de Matem aticas Universidad de Ja en 23071 Ja en, Spain 2012 PADGE Conference on Pure and Applied Differential Geometry Leuven, August 2012


  1. Soliton solutions for Lagrangian MCF ⊠ Self-similar solutions for Lagrangian MCF: H = ± φ ⊥ Examples: self-shrinkers product of circles and lines S 1 × R ⊂ C 2 , S 1 × S 1 ⊂ C 2

  2. Soliton solutions for Lagrangian MCF ⊠ Self-similar solutions for Lagrangian MCF: H = ± φ ⊥ Examples: self-shrinkers product of circles and lines S 1 × R ⊂ C 2 , S 1 × S 1 ⊂ C 2 � [Anciaux, 2006] Construction of Lagrangian self-similar solutions to the mean curvature flow in C n . Geom. Dedicata 120 (2006), 37–48.

  3. Soliton solutions for Lagrangian MCF ⊠ Self-similar solutions for Lagrangian MCF: H = ± φ ⊥ Examples: self-shrinkers product of circles and lines S 1 × R ⊂ C 2 , S 1 × S 1 ⊂ C 2 � [Anciaux, 2006] Construction of Lagrangian self-similar solutions to the mean curvature flow in C n . Geom. Dedicata 120 (2006), 37–48. � [Lee & Wang, 2009] Hamiltonian stationary shrinkers and expanders for Lagrangian mean curvature flows. J. Differential Geom. 83 (2009), 27–42. � [Lee & Wang, 2010] Hamiltonian stationary cones and self-similar solutions in higher dimension. Trans. Amer. Math. Soc. 362 (2010), 1491–1503.

  4. Soliton solutions for Lagrangian MCF ⊠ Self-similar solutions for Lagrangian MCF: H = ± φ ⊥ Examples: self-shrinkers product of circles and lines S 1 × R ⊂ C 2 , S 1 × S 1 ⊂ C 2 � [Anciaux, 2006] Construction of Lagrangian self-similar solutions to the mean curvature flow in C n . Geom. Dedicata 120 (2006), 37–48. � [Lee & Wang, 2009] Hamiltonian stationary shrinkers and expanders for Lagrangian mean curvature flows. J. Differential Geom. 83 (2009), 27–42. � [Lee & Wang, 2010] Hamiltonian stationary cones and self-similar solutions in higher dimension. Trans. Amer. Math. Soc. 362 (2010), 1491–1503. � [Joyce, Lee & Tsui, 2010] Self-similar solutions and translating solitons for Lagrangian mean curvature flow. J. Differential Geom. 84 (2010), 127-161.

  5. Soliton solutions for Lagrangian MCF ⊠ Self-similar solutions for Lagrangian MCF: H = ± φ ⊥ Examples: self-shrinkers product of circles and lines S 1 × R ⊂ C 2 , S 1 × S 1 ⊂ C 2 � [Anciaux, 2006] Construction of Lagrangian self-similar solutions to the mean curvature flow in C n . Geom. Dedicata 120 (2006), 37–48. � [Lee & Wang, 2009] Hamiltonian stationary shrinkers and expanders for Lagrangian mean curvature flows. J. Differential Geom. 83 (2009), 27–42. � [Lee & Wang, 2010] Hamiltonian stationary cones and self-similar solutions in higher dimension. Trans. Amer. Math. Soc. 362 (2010), 1491–1503. � [Joyce, Lee & Tsui, 2010] Self-similar solutions and translating solitons for Lagrangian mean curvature flow. J. Differential Geom. 84 (2010), 127-161. � [Lotay & Neves, 2012] Uniqueness of Lagrangian self-expanders. Preprint 2012

  6. Soliton solutions for Lagrangian MCF ⊠ Translating solitons for Lagrangian MCF: H = e ⊥

  7. Soliton solutions for Lagrangian MCF ⊠ Translating solitons for Lagrangian MCF: H = e ⊥ β = −� φ, J e � + constant

  8. Soliton solutions for Lagrangian MCF ⊠ Translating solitons for Lagrangian MCF: H = e ⊥ β = −� φ, J e � + constant Simple examples: products with the grim-reaper curve and lines

  9. Soliton solutions for Lagrangian MCF ⊠ Translating solitons for Lagrangian MCF: H = e ⊥ β = −� φ, J e � + constant Simple examples: products with the grim-reaper curve and lines

  10. Soliton solutions for Lagrangian MCF ⊠ Translating solitons for Lagrangian MCF: H = e ⊥ β = −� φ, J e � + constant Simple examples: products with the grim-reaper curve and lines � [Neves & Tian, 2007] Translating solutions to Lagrangian mean curvature flow. To appear in Trans. Amer. Math. Soc.

  11. Soliton solutions for Lagrangian MCF ⊠ Translating solitons for Lagrangian MCF: H = e ⊥ β = −� φ, J e � + constant Simple examples: products with the grim-reaper curve and lines � [Neves & Tian, 2007] Translating solutions to Lagrangian mean curvature flow. To appear in Trans. Amer. Math. Soc. � [Joyce, Lee & Tsui, 2010] Self-similar solutions and translating solitons for Lagrangian mean curvature flow. J. Differential Geom. 84 (2010), 127-161.

  12. SELF-SIMILAR SOLUTIONS

  13. Self-expanders Φ δ : R 2 → C 2 , δ > 0

  14. Self-expanders Φ δ : R 2 → C 2 , δ > 0 � i s δ cosh t e − i s c δ , t δ sinh t e i c δ s � Φ δ ( s , t ) = HSL H δ = Φ ⊥ s δ = sinh δ , c δ = cosh δ , t δ = tanh δ δ

  15. Self-expanders Φ δ : R 2 → C 2 , δ > 0 � i s δ cosh t e − i s c δ , t δ sinh t e i c δ s � Φ δ ( s , t ) = HSL H δ = Φ ⊥ s δ = sinh δ , c δ = cosh δ , t δ = tanh δ δ cosh 2 δ / ∈ Q , Φ δ embedded plane;

  16. Self-expanders Φ δ : R 2 → C 2 , δ > 0 � i s δ cosh t e − i s c δ , t δ sinh t e i c δ s � Φ δ ( s , t ) = HSL H δ = Φ ⊥ s δ = sinh δ , c δ = cosh δ , t δ = tanh δ δ cosh 2 δ / ∈ Q , Φ δ embedded plane; cosh 2 δ = p / q ∈ Q , ( p , q ) = 1 Φ p , q : R 2 → C 2 , p > q � [Lee & Wang, 2009] � i √ q cosh t e − i √ q √ p sinh t e i √ p Φ p , q ( s , t ) = √ p − q � p s , 1 q s ◮ Φ p , q ( s + 2 π √ pq , t ) = Φ p , q ( s , t ), ∀ ( s , t ) ∈ R 2 cylinder

  17. Self-expanders Φ δ : R 2 → C 2 , δ > 0 � i s δ cosh t e − i s c δ , t δ sinh t e i c δ s � Φ δ ( s , t ) = HSL H δ = Φ ⊥ s δ = sinh δ , c δ = cosh δ , t δ = tanh δ δ cosh 2 δ / ∈ Q , Φ δ embedded plane; cosh 2 δ = p / q ∈ Q , ( p , q ) = 1 Φ p , q : R 2 → C 2 , p > q � [Lee & Wang, 2009] � i √ q cosh t e − i √ q √ p sinh t e i √ p Φ p , q ( s , t ) = √ p − q � p s , 1 q s ◮ Φ p , q ( s + 2 π √ pq , t ) = Φ p , q ( s , t ), ∀ ( s , t ) ∈ R 2 cylinder ◮ p odd, q even: Φ p , q ( s + π √ pq , − t ) = Φ p , q ( s , t ), ∀ ( s , t ) ∈ R 2 Moebius strip

  18. Plane Φ δ , cosh 2 δ / ∈ Q

  19. Cylinder Φ 3 , 1

  20. Moebius strip Φ 3 , 2

  21. Self-shrinkers Υ γ : R 2 → C 2 , 0 < γ < π/ 2

  22. Self-shrinkers Υ γ : R 2 → C 2 , 0 < γ < π/ 2 � c γ , t γ sinh t e − i c γ s � i s Υ γ ( s , t ) = − i s γ cosh t e HSL H γ = − Υ ⊥ s γ = sin γ , c γ = cos γ , t γ = tan γ γ

  23. Self-shrinkers Υ γ : R 2 → C 2 , 0 < γ < π/ 2 � c γ , t γ sinh t e − i c γ s � i s Υ γ ( s , t ) = − i s γ cosh t e HSL H γ = − Υ ⊥ s γ = sin γ , c γ = cos γ , t γ = tan γ γ cos 2 γ / ∈ Q , Υ γ embedded plane;

  24. Self-shrinkers Υ γ : R 2 → C 2 , 0 < γ < π/ 2 � c γ , t γ sinh t e − i c γ s � i s Υ γ ( s , t ) = − i s γ cosh t e HSL H γ = − Υ ⊥ s γ = sin γ , c γ = cos γ , t γ = tan γ γ cos 2 γ / ∈ Q , Υ γ embedded plane; cos 2 γ = p / q ∈ Q , ( p , q ) = 1 Υ p , q : R 2 → C 2 , p < q � [Lee & Wang, 2009] � − i √ q cosh t e i √ q √ p sinh t e − i √ p Υ p , q ( s , t ) = √ q − p p s , 1 � q s ◮ Υ p , q ( s + 2 π √ pq , t ) = Υ p , q ( s , t ), ∀ ( s , t ) ∈ R 2 cylinder

  25. Self-shrinkers Υ γ : R 2 → C 2 , 0 < γ < π/ 2 � c γ , t γ sinh t e − i c γ s � i s Υ γ ( s , t ) = − i s γ cosh t e HSL H γ = − Υ ⊥ s γ = sin γ , c γ = cos γ , t γ = tan γ γ cos 2 γ / ∈ Q , Υ γ embedded plane; cos 2 γ = p / q ∈ Q , ( p , q ) = 1 Υ p , q : R 2 → C 2 , p < q � [Lee & Wang, 2009] � − i √ q cosh t e i √ q √ p sinh t e − i √ p Υ p , q ( s , t ) = √ q − p p s , 1 � q s ◮ Υ p , q ( s + 2 π √ pq , t ) = Υ p , q ( s , t ), ∀ ( s , t ) ∈ R 2 cylinder ◮ q even, p odd: Υ p , q ( s + π √ pq , − t ) = Υ p , q ( s , t ), ∀ ( s , t ) ∈ R 2 Moebius strip

  26. Plane Υ γ , cos 2 γ / ∈ Q

  27. Cylinder Υ 1 , 3

  28. Moebius strip Υ 1 , 2

  29. Self-shrinkers Ψ ν : S 1 × R → C 2 , ν > 0

  30. Self-shrinkers Ψ ν : S 1 × R → C 2 , ν > 0 � s ν , t ν sin s e i s ν t � i t Ψ ν ( e i s , t ) = c ν cos s e HSL H ν = − Ψ ⊥ s ν = sinh ν , c ν = cosh ν , t ν = coth ν ν

  31. Self-shrinkers Ψ ν : S 1 × R → C 2 , ν > 0 � s ν , t ν sin s e i s ν t � i t Ψ ν ( e i s , t ) = c ν cos s e HSL H ν = − Ψ ⊥ s ν = sinh ν , c ν = cosh ν , t ν = coth ν ν sinh 2 ν / ∈ Q , Ψ ν embedded cylinder;

  32. Self-shrinkers Ψ ν : S 1 × R → C 2 , ν > 0 � s ν , t ν sin s e i s ν t � i t Ψ ν ( e i s , t ) = c ν cos s e HSL H ν = − Ψ ⊥ s ν = sinh ν , c ν = cosh ν , t ν = coth ν ν sinh 2 ν / ∈ Q , Ψ ν embedded cylinder; sinh 2 ν = m / n ∈ Q , ( m , n )=1 Ψ m , n : S 1 × R → C 2 , ( m , n ) = 1 � [Lee & Wang, 2010] � 1 √ n cos s e i √ n √ m sin s e i √ m √ 1 � m t , n t Ψ m , n ( s , t ) = m + n ◮ Ψ m , n ( s +2 π, t )=Ψ m , n ( s , t )=Ψ m , n ( s , t +2 π √ mn ), ∀ ( s , t ) ∈ R 2

  33. Family Ψ m , n

  34. Family Ψ m , n ◮ m , n odd: Ψ m , n ( s + π, t + π √ mn ) = Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 T m , n = Ψ m , n ( R 2 / Λ m , n ) torus ◮ m odd, n even: Ψ m , n (2 π − s , t + π √ mn )=Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 Klein bottle ◮ m even, n odd: Ψ m , n ( π − s , t + π √ mn )=Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 Klein bottle

  35. Family Ψ m , n ◮ m , n odd: Ψ m , n ( s + π, t + π √ mn ) = Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 T m , n = Ψ m , n ( R 2 / Λ m , n ) torus ◮ m odd, n even: Ψ m , n (2 π − s , t + π √ mn )=Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 Klein bottle ◮ m even, n odd: Ψ m , n ( π − s , t + π √ mn )=Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 Klein bottle Clifford torus T 1 , 1 only one embedded

  36. Family Ψ m , n ◮ m , n odd: Ψ m , n ( s + π, t + π √ mn ) = Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 T m , n = Ψ m , n ( R 2 / Λ m , n ) torus ◮ m odd, n even: Ψ m , n (2 π − s , t + π √ mn )=Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 Klein bottle ◮ m even, n odd: Ψ m , n ( π − s , t + π √ mn )=Ψ m , n ( s , t ), ∀ ( s , t ) ∈ R 2 Klein bottle Clifford torus T 1 , 1 only one embedded 4( m + n ) 2 π 2  , m or n even √ mn   Willmore ( T m , n ) = 2 Area ( T m , n ) = 2( m + n ) 2 π 2  , m and n odd  √ mn

  37. Clifford torus

  38. Torus Ψ 1 , 3

  39. Klein bottle Ψ 1 , 2

  40. Classification results

  41. Classification results Theorem φ : M 2 → C 2 HSL self-similar solution for MCF (a) φ self-expander (H = φ ⊥ ) ∼ Φ δ : R 2 → C 2 , δ > 0 loc ⇒ φ loc (b) φ self-shrinker (H = − φ ⊥ ) ⇒ φ ∼ (i) S 1 × R (ii) S 1 × S 1 (iii) Υ γ : R 2 → C 2 , 0 < γ < π/ 2 (iv) Ψ ν : S 1 × R → C 2 , ν > 0

  42. Classification results Theorem φ : M 2 → C 2 HSL self-similar solution for MCF (a) φ self-expander (H = φ ⊥ ) ∼ Φ δ : R 2 → C 2 , δ > 0 loc ⇒ φ loc (b) φ self-shrinker (H = − φ ⊥ ) ⇒ φ ∼ (i) S 1 × R (ii) S 1 × S 1 (iii) Υ γ : R 2 → C 2 , 0 < γ < π/ 2 (iv) Ψ ν : S 1 × R → C 2 , ν > 0 Corollary φ : M → C 2 HSL self-similar solution for MCF M compact orientable ⇒ φ ( M ) ∼ T m , n

  43. THE CLIFFORD TORUS AS A SELF-SHRINKER

  44. Self-shrinkers: notion and examples

  45. Self-shrinkers: notion and examples φ : M n → R m self-shrinker if H = − φ ⊥ ( H = trace σ )

  46. Self-shrinkers: notion and examples φ : M n → R m self-shrinker if H = − φ ⊥ ( H = trace σ ) ◮ F ( p , t ) = √ 1 − 2 t Φ( p ), 0 ≤ t < 1 / 2, solution to (MCF)

  47. Self-shrinkers: notion and examples φ : M n → R m self-shrinker if H = − φ ⊥ ( H = trace σ ) ◮ F ( p , t ) = √ 1 − 2 t Φ( p ), 0 ≤ t < 1 / 2, solution to (MCF) Example (Sphere) S n ( √ n ) ֒ → R n +1 , | σ | 2 ≡ 1

  48. Self-shrinkers: notion and examples φ : M n → R m self-shrinker if H = − φ ⊥ ( H = trace σ ) ◮ F ( p , t ) = √ 1 − 2 t Φ( p ), 0 ≤ t < 1 / 2, solution to (MCF) Example (Sphere) S n ( √ n ) ֒ → R n +1 , | σ | 2 ≡ 1 Example (Clifford) S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ֒ → R n +2 , n 1 , n 2 ∈ N , n 1 + n 2 = n , | σ | 2 ≡ 2

  49. Self-shrinkers: notion and examples φ : M n → R m self-shrinker if H = − φ ⊥ ( H = trace σ ) ◮ F ( p , t ) = √ 1 − 2 t Φ( p ), 0 ≤ t < 1 / 2, solution to (MCF) Example (Sphere) S n ( √ n ) ֒ → R n +1 , | σ | 2 ≡ 1 Example (Clifford) S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ֒ → R n +2 , n 1 , n 2 ∈ N , n 1 + n 2 = n , | σ | 2 ≡ 2 Example (Product of n -circles) n ) · · · × S 1 ֒ → R 2 n , | σ | 2 ≡ n , Lagrangian in R 2 n ≡ C n S 1 ×

  50. Self-shrinkers: notion and examples φ : M n → R m self-shrinker if H = − φ ⊥ ( H = trace σ ) ◮ F ( p , t ) = √ 1 − 2 t Φ( p ), 0 ≤ t < 1 / 2, solution to (MCF) Example (Sphere) S n ( √ n ) ֒ → R n +1 , | σ | 2 ≡ 1 Example (Clifford) S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ֒ → R n +2 , n 1 , n 2 ∈ N , n 1 + n 2 = n , | σ | 2 ≡ 2 Example (Product of n -circles) n ) · · · × S 1 ֒ → R 2 n , | σ | 2 ≡ n , Lagrangian in R 2 n ≡ C n S 1 × Example (Product of a circle and ( n − 1)-sphere) ( e it , ( x 1 , . . . , x n )) �→ √ n e it ( x 1 , . . . , x n ) S 1 × S n − 1 → C n ≡ R 2 n , | σ | 2 ≡ (3 n − 2) / n , Lagrangian in C n ≡ R 2 n

  51. Case n = 1: Self-shrinking curves

  52. Case n = 1: Self-shrinking curves − → κ α = − α ⊥

  53. Case n = 1: Self-shrinking curves − → κ α = − α ⊥ � [Abresh & Langer, J. Diff. Geom. 1986] curves

  54. Classification and rigidity results, n ≥ 2

  55. Classification and rigidity results, n ≥ 2 � [Huisken, J. Diff. Geom. 1990] φ : M n → R n +1 , M compact self-shrinker H ≥ 0 ⇒ M n ≡ S n ( √ n )

  56. Classification and rigidity results, n ≥ 2 � [Huisken, J. Diff. Geom. 1990] φ : M n → R n +1 , M compact self-shrinker H ≥ 0 ⇒ M n ≡ S n ( √ n ) � [Smoczyk, Int. Math. Res. Not. 2005] φ : M n → R m , M compact self-shrinker | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | � M n spherical: M n → S m − 1 ( √ n ), ˆ H = 0

  57. Classification and rigidity results, n ≥ 2 � [Huisken, J. Diff. Geom. 1990] φ : M n → R n +1 , M compact self-shrinker H ≥ 0 ⇒ M n ≡ S n ( √ n ) � [Smoczyk, Int. Math. Res. Not. 2005] φ : M n → R m , M compact self-shrinker | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | � M n spherical: M n → S m − 1 ( √ n ), ˆ H = 0 � [Le & Sesum, Comm. Anal. Geom. 2011] � [Cao & Li, Calc. Var. PDE 2012] φ : M n → R m , M compact self-shrinker | σ | 2 ≤ 1 ⇒ | σ | 2 ≡ 1, M n ≡ S n ( √ n ) ⊂ R n +1

  58. Classification and rigidity results, n ≥ 2 � [Li & Wei, preprint 2012] φ : M n → R n +2 , M compact self-shrinker

  59. Classification and rigidity results, n ≥ 2 � [Li & Wei, preprint 2012] φ : M n → R n +2 , M compact self-shrinker 1 ≤ | σ | 2 ≤ 2 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H |

  60. Classification and rigidity results, n ≥ 2 � [Li & Wei, preprint 2012] φ : M n → R n +2 , M compact self-shrinker 1 ≤ | σ | 2 ≤ 2 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 1 either | σ | 2 ≡ 1, M ≡ S n ( √ n ) ⊂ R n +1 2 or | σ | 2 ≡ 2, M ≡ S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ⊂ R n +2 , n 1 + n 2 = n

  61. Classification and rigidity results, n ≥ 2 � [Li & Wei, preprint 2012] φ : M n → R n +2 , M compact self-shrinker 1 ≤ | σ | 2 ≤ 2 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 1 either | σ | 2 ≡ 1, M ≡ S n ( √ n ) ⊂ R n +1 2 or | σ | 2 ≡ 2, M ≡ S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ⊂ R n +2 , n 1 + n 2 = n φ : M 2 → R 2+ p , M compact self-shrinker 1 ≤ | σ | 2 ≤ 5 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 3

  62. Classification and rigidity results, n ≥ 2 � [Li & Wei, preprint 2012] φ : M n → R n +2 , M compact self-shrinker 1 ≤ | σ | 2 ≤ 2 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 1 either | σ | 2 ≡ 1, M ≡ S n ( √ n ) ⊂ R n +1 2 or | σ | 2 ≡ 2, M ≡ S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ⊂ R n +2 , n 1 + n 2 = n φ : M 2 → R 2+ p , M compact self-shrinker 1 ≤ | σ | 2 ≤ 5 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 3 √ 1 either | σ | 2 ≡ 1, M ≡ S 2 ( 2) ⊂ R 3 √ √ 2 or | σ | 2 ≡ 5 / 3, M ≡ S 2 ( → R 5 Veronese 6) → S 4 ( 2) ֒

  63. Classification and rigidity results, n ≥ 2 � [Li & Wei, preprint 2012] φ : M n → R n +2 , M compact self-shrinker 1 ≤ | σ | 2 ≤ 2 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 1 either | σ | 2 ≡ 1, M ≡ S n ( √ n ) ⊂ R n +1 2 or | σ | 2 ≡ 2, M ≡ S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ⊂ R n +2 , n 1 + n 2 = n φ : M 2 → R 2+ p , M compact self-shrinker 1 ≤ | σ | 2 ≤ 5 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 3 √ 1 either | σ | 2 ≡ 1, M ≡ S 2 ( 2) ⊂ R 3 √ √ 2 or | σ | 2 ≡ 5 / 3, M ≡ S 2 ( → R 5 Veronese 6) → S 4 ( 2) ֒ 3 ≤ | σ | 2 ≤ 11 5 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 6

  64. Classification and rigidity results, n ≥ 2 � [Li & Wei, preprint 2012] φ : M n → R n +2 , M compact self-shrinker 1 ≤ | σ | 2 ≤ 2 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 1 either | σ | 2 ≡ 1, M ≡ S n ( √ n ) ⊂ R n +1 2 or | σ | 2 ≡ 2, M ≡ S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ⊂ R n +2 , n 1 + n 2 = n φ : M 2 → R 2+ p , M compact self-shrinker 1 ≤ | σ | 2 ≤ 5 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 3 √ 1 either | σ | 2 ≡ 1, M ≡ S 2 ( 2) ⊂ R 3 √ √ 2 or | σ | 2 ≡ 5 / 3, M ≡ S 2 ( → R 5 Veronese 6) → S 4 ( 2) ֒ 3 ≤ | σ | 2 ≤ 11 5 | H | > 0; ∇ ⊥ ν = 0, ν = H / | H | 6 √ √ 1 either | σ | 2 ≡ 5 / 3, M ≡ S 2 ( → R 5 Veronese 6) → S 4 ( 2) ֒ √ √ 2 or | σ | 2 ≡ 11 / 6, M ≡ S 2 ( → R 7 Boruvka 12) → S 6 ( 2) ֒

  65. Our contribution (arbitrary dimension and codimension) Theorem A φ : M n → R n + p , M compact self-shrinker | H | 2 constant or | H | 2 ≤ n or | H | 2 ≥ n | σ | 2 ≤ 3 p − 4 2 p − 3

  66. Our contribution (arbitrary dimension and codimension) Theorem A φ : M n → R n + p , M compact self-shrinker | H | 2 constant or | H | 2 ≤ n or | H | 2 ≥ n | σ | 2 ≤ 3 p − 4 2 p − 3 Then: 1 either | σ | 2 ≡ 1 , M ≡ S n ( √ n ) ⊂ R n +1 [p = 1 ]

  67. Our contribution (arbitrary dimension and codimension) Theorem A φ : M n → R n + p , M compact self-shrinker | H | 2 constant or | H | 2 ≤ n or | H | 2 ≥ n | σ | 2 ≤ 3 p − 4 2 p − 3 Then: 1 either | σ | 2 ≡ 1 , M ≡ S n ( √ n ) ⊂ R n +1 [p = 1 ] 2 or | σ | 2 ≡ 3 p − 4 2 p − 3 , (i) either M ≡ S n 1 ( √ n 1 ) × S n 2 ( √ n 2 ) ⊂ R n +2 , n 1 + n 2 = n, (with | σ | 2 ≡ 2 ) [p = 2 ] √ 6) ⊂ R 5 (with | σ | 2 ≡ 5 / 3 ) [n = 2 , p = 3 ] (ii) or Veronese M ≡ S 2 (

  68. Proof of Theorem A

  69. Proof of Theorem A H = − φ ⊥ ⇒ △| φ | 2 = 2( n − | H | 2 )

Recommend


More recommend