koto k
play

KOTO K ( ) 1 - PowerPoint PPT Presentation

KOTO K ( ) 1 Contents Motivation KOTO Experiment Prospect 2 Motivation 3 New Physics 4 2008 : Kobayashi and Maskawa


  1. KOTO 実 験 に よ る K 中 間 子 稀 崩 壊 探 索 南 條 創 ( 京 都 大 学 ) 1

  2. Contents ● Motivation ● KOTO Experiment ● Prospect 2

  3. Motivation 3

  4. New Physics は あ る の か ? 4

  5. ● 2008 : Kobayashi and Maskawa – CP-violation was established. – The size is not enough to explain matter dominant universe. – New CP-violating particle is expected in higher energy scale. ● 2013 : Englert and Higgs – Higgs was discovered but it is far from closing the book. – New physics in high energy scale is expected to stabilize Higgs mass. – SUSY, little Higgs, Compositeness, Extra Dimension, …? – Dark matter? 5

  6. ● New Physics は 存 在 す る 。 – 物 質 優 勢 宇 宙 – Dark Matter – ... ● ど う や っ て 探 す ? 6

  7. New Physics Search ● High Energy Frontier ↔ High Intensity Frontier – High energy frontier → direct production of heavy particle – High intensity frontier → indirect access, high energy reach 一 瞬 の 高 エ ネ ル ギ ー ス ケ ー ル → 稀 な プ ロ セ ス ● 標 準 理 論 の 抑 制 ● GIM, CKM,Helicity...suppression ● 精 密 な 理 論 予 測 ● Multi-process approach 多 方 面 か ら フ レ ー バ 構 造 を 明 ら か に ● Correlation is important. ● CP-violation is another guide. explanation of matter dominant universe 7

  8. Why Kaon? Blanke '13 ● “Generally most powerful” – GIM suppression of u and c quarks – Hierarchical structure of CKM for t quark ● Most suppressed in s → d transition (λ 5 ) – b → d (λ 3 ) , b → s (λ 2 ) u c t d s b 例え B s/d → μμ が SM-like であっても、 s → d は NP でエンハンス可能 8

  9. Bona '07 Ishidori '13 Energy Reach Flavor structure Tree/Strong couple ~1 MFV Generic Loop α S ~0.1 Tree/Strong couple 5 TeV 24000 TeV Loop α W ~0.03 Loop α S 0.5 TeV 2400 TeV Loop α W 0.2 TeV 800 TeV (Bona '07) Generic の 場 合 、 K sector が 最 強 → 10 4 TeV ま で の リ ー チ な ぜ ま だ 見 え な い ? ↔ Energy scale, Flavor 構 造 Minimal Flavor Violation like な 場 合 、 B と 強 い 相 関 9 (NP で も CKM の 構 造 を 保 持 , 新 し い CPV phase も な い )

  10. ● NP > 1 TeV? (ATLAS,CMS) ● Non-MFV like ? (LHCb,CMS) 10 Buras'13

  11. Rare decay ● Strong suppression from CKM Buras '15 – Small theoretical uncertainty ~2% ● – High energy scale Hadron matrix element from tree process Ke3/Kmu3 – Sensitive to new physics beyond the SM CP-violating process ● Related to charged mode ● Grossman-Nir bound : – ● Model-independent inequality w/ iso-spin rotation 11

  12. Status Direct limit 2.6x10 -8 (KEK E391a) 10 -8 Indirect limit 1.5x10 -9 (Grossman-Nir) 10 -9 10 -10 New Physics? SM sensitivity 2.4x10 -11 10 -11 12

  13. SM extension w/ 4 th generation Otto '12 → ruled out Direct search EW precision test Higgs mass 13

  14. from ΔS=2 と ΔS=1 の NP に よ る 変 化 → 同 じ new phase が 支 配 Z'/Z with Left / Right-handed coupling Littlest Higgs with T-parity 14

  15. Buras '15 Input from ε'/ε SM expectation Direct CPV from KL → ππ (Theory) Progress from lattice calculation Left and Right-handed coupling still can enhance Br(KL) MFV Left or Right-handed coupling 15

  16. Buras '15 EW penguin contribute to e'/e in negative interference. Negative correlation btw Br(KL) 16

  17. Buras '15 Left- and right-handed coupling model can enhance Br(KL) 17

  18. Buras '15 18

  19. Littlest Higgs with T-Parity Blanke '15 Symmetry breaking scale 19

  20. Tanimoto, SUSY at 10-50 TeV Yamamoto '15 ● 10 TeV SUSY → still large enhancement on Br(KL) ● Less correlation btw Br(KL) and ε – 50TeV SUSY still have enhancement factor on Br(KL) 20

  21. Weekly-coupled light Z' Fuyuto '14 with Lμ – Lτ coupling ● Explain g-2 with Mz'<400MeV – also relate to B → Kμμ from E949 experiment 21 KOTO already access here.

  22. KOTO Experiment 22

  23. KOTO : K 0 at TOkai Extraction ● J-PARC Accelerator – High power ↔ Statistics of rare process – Slow extraction ↔ Event pile-up due to high rate ● J-PARC 33kW (June 2015) ~ World-highest class 3GeV 30GeV 400MeV 23

  24. Fixed Target Experiment ● High intensity proton beam+ Primary target – High intensity secondary products ● Beam line – Transport particles of interest ● Reduce unwanted particles – Long life to transport. Gold 15mm x 6mm x 66mm 24 30 GeV proton

  25. Particles mass and life time Bottom Tools for fixed target experiment with high intensity proton driver Lower mass Longer life time Strange Collider has bee a special tool Kaon for fixed target experiment (τ 、 D,B,t) Pion Neutrino source Muon source 25

  26. Kaon ● Low mass (0.5 GeV) ● Long life time (15m) ● Strangeness Good for fixed target → Flavor Changing Neutral Current ● s → d transition – Flavor changing neutral current (GIM) – Strong CKM suppression ● K L → π 0 νν (Br 3x10 -11 in SM) – Direct CP-violation 26

  27. Beam line ● 金標的 + proton ● KL beam line ● 電磁石 (charged) ● 20m 長尺 (short-lived) ● コリメータ (beam halo) → 細くシャープな中性ビーム (KL, γ, neutron) “Pencil Beam” 33kW 6sec cycle 立体角 7.8μsr 4x10 13 proton ~10 7 KL ~40%lost by decay 27

  28. 2 nd collimator (4.5+0.5m) Beam plug 1 st collimator ( 4m-long ) Dipole magnet 28

  29. Signal Reconstruction ● 2γ+nothing → Calorimeter + Veto detectors ● Beam constraint → “pencil beam” 6.1m 29

  30. Detector ~2m Veto : γ/charged 10 -4 – 10 -6 reduction 30

  31. History 100hours Detector upgrade 31

  32. 1st physics run in 2013 CKM2014 Sensitivity : 1.29x10 -8 (Preliminary) ~ E391a sensitivity with only 100-hour run 1 event in the signal box 87 1 87 0.2±0.1 Number of observed data → Well understood. 9 7.2±0.5 32

  33. Main background source in E391a Halo neutron → π 0 at Upstream detector Downstream detector → Largely reduced. E391a Final (5month) KOTO 1 st Physics run(4days) S.E.S : 1.11x10 -8 S.E.S : 1.29x10 -8 87 87 1 0.2±0.1 9 7.2±0.5 33

  34. Background source in KOTO 87 87 1 0.2±0.1 9 7.2±0.5 CC05 CC06 Beam pipe 34 1m

  35. Run in April-June 2015 ● Physics run ● 5.3 times higher POT ↔ run in May 2013 ● Calibration and special runs Calibration, Physics run in 2015 Special runs 33kW 29kW X5.3 26kW 26kW Physics 24kW Integrated POT for May 2013 35

  36. Check with 3π 0 sample • Calorimeter and KL properties consistent with the run in May 2013. • More detailed calibration is on-going • Study to suppress background Black :April-May 2015 Red :May 2013 Area normalized Area normalized 36

  37. To suppress halo neutron ● Upstream beam window – Kapton 125um → 12.5um – Reduce neutron scattering ● Re-alined collimator – Reduce neutron scattering Hadron interaction events on the collimator inner surface 37

  38. Collimator alignment with new beam profle monitor Lead(1.5mm) Mirror Phosphor plate Re-alined collimators 38

  39. To understand hadron interaction events Scattered at the target Core neutron 10 mm thick Al Contribution by Chonbuk Univ. * Removed in physics run Took Al-target data 70 hours Gammas from π 0 Hadron interaction > 15 times higher statics than May 2013 Reconstructed P T (MeV/c) 39 Reconstructed Z vertex Developing BG reduction with cluster shape (mm)

  40. To suppress low P T events CC05 CC06 Beam pipe Plastic scintillator WLS fiber 1m PMT ● Beam pipe (5mm t) SUS → Aluminum ● Installed Beam Pipe Charged Veto – Plastic scintillator 5-mm thick – Wavelength shifting fber readout ~1/60 reduction expected 40

  41. To suppress K L → 2π 0 Added modules X0: 4 → 6.2 Photon punch-through inefficiency → 1/5 Lead and Acrylic Cherenkov detector In-beam photon veto Lead and Aerogel Cherenkov detector 41

  42. Prospect 42

  43. To suppress K L → 2π 0 more • Install inner barrel detector in winter 2015 • Add 5 X0 to 13.5 X0 of current Main Barrel – Suppress punch-through ineffciency by 1/50. Gluing fber to scintillator was mostly fnished. Module assembly will start soon. Will install it in this winter + Maintenance for existing broken channels in vacuum 43

  44. Plan • NA62 will take 100 events toward 2017 for – Push Grossman-Nir limit down. • We will overcome our background and improve our sensitivity 2015 April-June 2015 Fall 2016 2017 44

  45. Long term plan 45

Recommend


More recommend