“JUST THE MATHS” SLIDES NUMBER 1.11 ALGEBRA 11 Inequalities 2 by A.J.Hobson 1.11.1 Recap on modulus, absolute value or numerical value 1.11.2 Interval inequalities
UNIT 1.11 - ALGEBRA 11 INEQUALITIES 2. 1.11.1 RECAP ON MODULUS, ABSOLUTE VALUE OR NUMERICAL VALUE | x | = x if x ≥ 0; | x | = − x if x ≤ 0 . Notes: √ (i) Alternatively | x | = + x 2 ; (ii) It can be shown that, | a + b |≤| a | + | b | ; the “Triangle Inequality” . 1.11.2 INTERVAL INEQUALITIES (a) Using the Modulus notation We investigate the inequality | x − a | < k, where a is any number and k is a positive number. Case 1. x − a > 0 . x − a < k, that is , x < a + k. 1
Case 2. x − a < 0 . − ( x − a ) < k, that is , a − x < k or x > a − k. Conclusion | x − a | < k means a − k < x < a + k. Similarly for | x − a |≤ k . EXAMPLE Obtain the closed interval represented by the statement | x + 3 |≤ 10 Solution Using a = − 3 and k = 10, we have − 3 − 10 ≤ x ≤ − 3 + 10 . That is, − 13 ≤ x ≤ 7 . (b) Using Factorised Polynomials EXAMPLE Find the range of values of x for which ( x + 3)( x − 1)( x − 2) > 0 2
Solution Critical values are x = − 3 , 1 , 2 dividing the line into x < − 3 , − 3 < x < 1 , 1 < x < 2 , x > 2; x < − 3 gives (neg)(neg)(neg) and therefore < 0; − 3 < x < 1 gives (pos)(neg)(neg) and therefore > 0; 1 < x < 2 gives (pos)(pos)(neg) and therefore < 0; x > 2 gives (pos)(pos)(pos) and therefore > 0. Ans : − 3 < x < 1 and x > 2 . Note: Alternatively, sketch the graph of the polynomial. y ✻ ✲ O − 3 1 2 x 3
Recommend
More recommend