Ionising Stellar Feedback with Phantom and CMacIonize Maya Petkova Supervisor: Ian Bonnell Collaborators: Guillaume Laibe, Bert Vandenbroucke, Jim Dale
SPH and MCRT JHK Spitzer/IRAC Herschel/PACS Herschel/Spire Bonnell, Bate & Vine (2003) Robitaille (2011) 0.2pc Smoothed ParPcle Monte Carlo Hydrodynamics RadiaPve Transfer
MCRT Recap
SPH and MCRT ParPcle posiPons, density structure SPH MCRT Moves parPcles Propagates light to new posiPons through a density based on forces. grid. Thermal energy deposited in the parPcles
SPH and MCRT ParPcle posiPons, density structure SPH MCRT Moves parPcles Propagates light to new posiPons through a density based on forces. grid. Thermal energy deposited in the parPcles
Lagrangian vs Eulerian Cloud SPH MCRT
Voronoi tessellaPon
Voronoi tessellaPon Hubber, Ercolano & Dale (2016)
An SPH parPcle and its kernel ⎧ 2 3 1 − 1.5 r ⎜ ⎞ ⎛ + 0.75 r ⎛ ⎜ ⎞ , r ≤ h ⎪ ⎟ ⎟ ⎝ h ⎠ ⎝ h ⎠ ⎪ ⎪ 3 ⎪ ⎛ ⎞ W ( r , h ) = 1 0.25 2 − r , h ≤ r ≤ 2 h ⎨ ⎜ ⎟ h 3 π ⎝ h ⎠ ⎪ ⎪ 0, r ≥ 2 h W ⎪ ⎪ 0.30 ⎩ 0.25 0.20 0.15 0.10 0.05 r 0.5 1.0 1.5 2.0 2.5 3.0 h
SPH density sum N ρ ( ! m i W ( ! r − ! ∑ r ) = r i , h ) i = 1
Voronoi cell density
How do we integrate a spherically symmetric funcPon over the volume of any random polyhedron?
Can How do we integrate a spherically symmetric funcPon over the volume of any random polyhedron? (analy&cally)
Yes. And this is how. Divergence Green’s Theorem Theorem b ∫ f ( x ) dx = F ( b ) − F ( a ) a
Divergence Theorem ∇⋅ ! ! ∫ ∫ F ⋅ ˆ F dV ndA = V ∂ V ⎧ 2 3 ⎜ ⎞ ⎛ ⎜ ⎞ ⎛ 1 − 1.5 r + 0.75 r , r ≤ h ⎪ ⎟ ⎟ h h ⎝ ⎠ ⎝ ⎠ ∇⋅ ! ⎪ ⎪ 3 ⎪ W ( r ) = 1 0.25 2 − r ⎛ ⎞ ∫ ∫ W dV F dV = , h ≤ r ≤ 2 h ⎨ ⎜ ⎟ h 3 π ⎝ h ⎠ ⎪ V V ⎪ 0, r ≥ 2 h ⎪ ⎪ ⎩ ! r ˆ F = F r ⎧ 1 10 h 2 r 5 + 1 3 3 r 3 − 8 h 3 r 6 , r ≤ h ⎪ ⎪ ⎛ ⎞ ⎪ 6 h 3 r 6 − h 3 r = 1 = 1 1 1 3 r 3 − 3 8 h r 4 + 6 5 h 2 r 5 − 1 r 2 W ( r ) dr ∫ F ⎟ , h ≤ r ≤ 2 h ⎨ ⎜ r 2 r 2 h 3 π 4 15 ⎝ ⎠ ⎪ ⎪ h 3 ⎪ 4 , r ≥ 2 h ⎩
Green’s Theorem ∇⋅ ! ! " ∫ ∫ ⋅ ˆ H dA H mdl = A ∂ A ! ∇⋅ ! ! ! H = H R R ∫ ∫ F ⋅ ˆ ndA H dA = ∂ V A µ = cos θ = r 0 r ⎧ 2 3 1 6 µ − 2 − 3 ⎛ r ⎞ µ − 4 − 1 ⎛ r ⎞ µ − 5 + B 3 , µ ≥ r 0 0 1 0 ⎪ ⎜ ⎟ ⎜ ⎟ 40 ⎝ h ⎠ 40 ⎝ h ⎠ r h ⎪ 0 ⎪ ⎛ ⎞ 2 3 − 3 3 ⎪ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ H R = 1 = 1 r 1 4 3 µ − 2 − r ⎟ µ − 3 + 3 r µ − 4 − 1 r µ − 5 + 1 r ⎟ + B 2 3 , r 2 h ≤ µ ≤ r ∫ F r sin θ dR 0 0 0 0 0 0 0 ⎜ µ ⎟ ⎨ ⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ h 3 π R R 4 ⎝ h ⎠ 10 ⎝ h ⎠ 30 ⎝ h ⎠ 15 ⎝ h ⎠ r h ⎪ ⎝ ⎠ 0 ⎪ − 3 − 1 ⎛ r ⎞ µ + B 3 3 , µ ≤ r ⎪ 0 0 ⎜ ⎟ ⎪ 4 ⎝ h ⎠ r 2 h ⎩ 0
Final soluPon I 0 = ϕ + C ⎛ ⎞ 2 3 3 1 = r 4 − 2 3 + 3 ⎛ r ⎞ − 1 ⎛ r ⎞ B 0 ⎜ 0 0 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎛ ⎞ 10 ⎝ h ⎠ 10 ⎝ h ⎠ 2 1 + r ⎝ ⎠ 2 cos 2 ϕ ⎜ 0 ⎟ R 0 ⎜ ⎟ ⎧ 2 3 − 2 I 1 = − sin − 1 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ − 2 3 + 3 r − 1 r − 1 r + C 0 0 0 ⎜ ⎟ , r 0 ≤ h 2 ⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 1 + r 3 ⎪ 10 h 10 h 5 h 0 B 2 = r ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ⎜ ⎟ 0 2 ⎨ R 0 ⎝ ⎠ 4 2 3 − 3 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪ − 4 3 + r ⎟− 3 r + 1 r − 1 r 0 0 0 0 , h ≤ r 0 ≤ 2 h ⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 2 ⎪ I − 2 = ϕ + r ⎝ h ⎠ 10 ⎝ h ⎠ 30 ⎝ h ⎠ 15 ⎝ h ⎠ ⎩ 0 2 tan ϕ + C R 0 ⎧ 2 3 − 2 − 2 3 + 3 ⎛ r ⎞ − 1 ⎛ r ⎞ + 7 ⎛ r ⎞ 0 0 0 , r 0 ≤ h 2 4 ⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ I − 4 = ϕ + 2 r 2 tan ϕ + 1 r ( ) + C 4 tan ϕ sec 2 ϕ + 2 0 0 10 ⎝ h ⎠ 10 ⎝ h ⎠ 5 ⎝ h ⎠ ⎪ R 0 3 R 0 ⎪ 2 3 − 3 − 2 3 ⎪ B 3 = r − 4 3 + r ⎛ ⎟− 3 ⎞ ⎛ r ⎞ + 1 ⎛ r ⎞ − 1 ⎛ r ⎞ + 8 ⎛ r ⎞ 0 0 0 0 0 0 , h ≤ r 0 ≤ 2 h ⎨ ⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 4 ⎝ h ⎠ 10 ⎝ h ⎠ 30 ⎝ h ⎠ 15 ⎝ h ⎠ 5 ⎝ h ⎠ ⎪ ⎪ − 3 ⎛ ⎞ r ⎪ 0 , r 0 ≥ 2 h ⎜ ⎟ ⎝ h ⎠ ⎪ ⎩ ⎧ 2 3 6 I − 2 − 3 1 ⎛ r ⎞ I − 4 − 1 ⎛ r ⎞ I − 5 + B 3 I 0 , µ ≥ r 0 0 1 0 ⎪ ⎜ ⎟ ⎜ ⎟ 40 ⎝ h ⎠ 40 ⎝ h ⎠ r h ⎪ α = R 0 0 ⎪ ⎛ 2 3 − 3 ⎞ 3 ⎪ = r 1 4 3 I − 2 − r ⎛ ⎟ I − 3 + 3 ⎞ ⎛ r ⎞ I − 4 − 1 ⎛ r ⎞ I − 5 + 1 ⎛ r ⎞ ⎟ + B 2 3 I 0 , r 2 h ≤ µ ≤ r r ∫ 0 0 0 0 0 0 0 0 H R Rd ϕ ⎜ I 1 ⎟ ⎨ ⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ h 3 π 4 ⎝ h ⎠ 10 ⎝ h ⎠ 30 ⎝ h ⎠ 15 ⎝ h ⎠ r h r ⎪ ⎝ ⎠ 0 0 cos ϕ ⎪ R 0 − 3 − 1 ⎛ r ⎞ I 1 + B 3 3 I 0 , µ ≤ r µ = ⎪ 0 0 ⎜ ⎟ 2 1 + r ⎪ 4 ⎝ h ⎠ r 2 h 2 cos 2 ϕ ⎩ 0 0 R 0 u = 1 − (1 + α 2 ) µ 2 I − 3 = α (1 + α 2 ) ⎛ ⎞ ⎛ ⎞ 2 u ⎟ + α ) + tan − 1 u ( 1 − u 2 + log(1 + u ) − log(1 − u ) 2 log(1 + u ) − log(1 − u ) ⎟ + C ⎜ ⎜ 4 ⎝ ⎠ ⎝ α ⎠ I − 5 = α (1 + α 2 ) 2 ⎛ 10 u − 6 u 3 ⎞ ⎟ + α (1 + α 2 ) ⎛ 2 u ⎞ ) + tan − 1 u ⎛ ⎞ ⎟ + α (1 − u 2 ) 2 + 3 log(1 + u ) − log(1 − u ) ( ) 1 − u 2 + log(1 + u ) − log(1 − u ) 2 log(1 + u ) − log(1 − u ) ( ⎟ + C ⎜ ⎜ ⎜ 16 4 ⎝ ⎠ ⎝ α ⎠ ⎝ ⎠
Graphic RepresentaPon of the SoluPon Petkova et al. 2018 ParPcle posiPon r 0 Voronoi cell φ R 0 wall Voronoi cell vertex
Graphic RepresentaPon of the SoluPon Petkova et al. 2018 ParPcle posiPon Voronoi cell wall
Graphic RepresentaPon of the SoluPon Petkova et al. 2018 ParPcle posiPon Voronoi cell wall
Kernel IntegraPon in 2D Petkova et al. 2018
Kernel IntegraPon in 3D Petkova et al. 2018 h\ps://github.com/mapetkova/kernel-integraPon
Numerical Tests Petkova et al. 2018
Comparison with the Common Density CalculaPon Methods Petkova et al. 2018 Disk galaxy Uniform cube SN shock Clumpy cloud
Density CalculaPon Timing Tests Petkova et al. 2018
ParPcle posiPons, density structure SPH MCRT Moves parPcles Propagates light to new posiPons through a density based on forces. grid. Thermal energy deposited in the parPcles
Live radiaPon hydrodynamics SPH: Phantom (Price et al. 2017) + MCRT: CMacIonize (Vandenbroucke & Wood, in press) + Density mapping: Petkova et al. 2018
Live radiaPon hydrodynamics (test): D-type expansion of an H II region Bisbas et al. 2015
Live radiaPon hydrodynamics (test): D-type expansion of an H II region Bisbas et al. 2015
Live radiaPon hydrodynamics (test): D-type expansion of an H II region Bisbas et al. 2015
Live radiaPon hydrodynamics (test): D-type expansion of an H II region Bisbas et al. 2015
Live radiaPon hydrodynamics (test)
Live radiaPon hydrodynamics (test)
Soon to come… Dale et al. 2012
MulPple sources
Open QuesPon: ResoluPon Koepferl et. al (2016)
Summary ParPcle posiPons, density structure SPH MCRT Moves parPcles Propagates light to new posiPons through a density based on forces. grid. Thermal energy deposited in the parPcles
Recommend
More recommend