ionising stellar feedback with phantom and cmacionize
play

Ionising Stellar Feedback with Phantom and CMacIonize Maya Petkova - PowerPoint PPT Presentation

Ionising Stellar Feedback with Phantom and CMacIonize Maya Petkova Supervisor: Ian Bonnell Collaborators: Guillaume Laibe, Bert Vandenbroucke, Jim Dale SPH and MCRT JHK Spitzer/IRAC Herschel/PACS Herschel/Spire Bonnell, Bate & Vine


  1. Ionising Stellar Feedback with Phantom and CMacIonize Maya Petkova Supervisor: Ian Bonnell Collaborators: Guillaume Laibe, Bert Vandenbroucke, Jim Dale

  2. SPH and MCRT JHK Spitzer/IRAC Herschel/PACS Herschel/Spire Bonnell, Bate & Vine (2003) Robitaille (2011) 0.2pc Smoothed ParPcle Monte Carlo Hydrodynamics RadiaPve Transfer

  3. MCRT Recap

  4. SPH and MCRT ParPcle posiPons, density structure SPH MCRT Moves parPcles Propagates light to new posiPons through a density based on forces. grid. Thermal energy deposited in the parPcles

  5. SPH and MCRT ParPcle posiPons, density structure SPH MCRT Moves parPcles Propagates light to new posiPons through a density based on forces. grid. Thermal energy deposited in the parPcles

  6. Lagrangian vs Eulerian Cloud SPH MCRT

  7. Voronoi tessellaPon

  8. Voronoi tessellaPon Hubber, Ercolano & Dale (2016)

  9. An SPH parPcle and its kernel ⎧ 2 3 1 − 1.5 r ⎜ ⎞ ⎛ + 0.75 r ⎛ ⎜ ⎞ , r ≤ h ⎪ ⎟ ⎟ ⎝ h ⎠ ⎝ h ⎠ ⎪ ⎪ 3 ⎪ ⎛ ⎞ W ( r , h ) = 1 0.25 2 − r , h ≤ r ≤ 2 h ⎨ ⎜ ⎟ h 3 π ⎝ h ⎠ ⎪ ⎪ 0, r ≥ 2 h W ⎪ ⎪ 0.30 ⎩ 0.25 0.20 0.15 0.10 0.05 r 0.5 1.0 1.5 2.0 2.5 3.0 h

  10. SPH density sum N ρ ( ! m i W ( ! r − ! ∑ r ) = r i , h ) i = 1

  11. Voronoi cell density

  12. How do we integrate a spherically symmetric funcPon over the volume of any random polyhedron?

  13. Can How do we integrate a spherically symmetric funcPon over the volume of any random polyhedron? (analy&cally)

  14. Yes. And this is how. Divergence Green’s Theorem Theorem b ∫ f ( x ) dx = F ( b ) − F ( a ) a

  15. Divergence Theorem ∇⋅ ! ! ∫ ∫ F ⋅ ˆ F dV ndA = V ∂ V ⎧ 2 3 ⎜ ⎞ ⎛ ⎜ ⎞ ⎛ 1 − 1.5 r + 0.75 r , r ≤ h ⎪ ⎟ ⎟ h h ⎝ ⎠ ⎝ ⎠ ∇⋅ ! ⎪ ⎪ 3 ⎪ W ( r ) = 1 0.25 2 − r ⎛ ⎞ ∫ ∫ W dV F dV = , h ≤ r ≤ 2 h ⎨ ⎜ ⎟ h 3 π ⎝ h ⎠ ⎪ V V ⎪ 0, r ≥ 2 h ⎪ ⎪ ⎩ ! r ˆ F = F r ⎧ 1 10 h 2 r 5 + 1 3 3 r 3 − 8 h 3 r 6 , r ≤ h ⎪ ⎪ ⎛ ⎞ ⎪ 6 h 3 r 6 − h 3 r = 1 = 1 1 1 3 r 3 − 3 8 h r 4 + 6 5 h 2 r 5 − 1 r 2 W ( r ) dr ∫ F ⎟ , h ≤ r ≤ 2 h ⎨ ⎜ r 2 r 2 h 3 π 4 15 ⎝ ⎠ ⎪ ⎪ h 3 ⎪ 4 , r ≥ 2 h ⎩

  16. Green’s Theorem ∇⋅ ! ! " ∫ ∫ ⋅ ˆ H dA H mdl = A ∂ A ! ∇⋅ ! ! ! H = H R R ∫ ∫ F ⋅ ˆ ndA H dA = ∂ V A µ = cos θ = r 0 r ⎧ 2 3 1 6 µ − 2 − 3 ⎛ r ⎞ µ − 4 − 1 ⎛ r ⎞ µ − 5 + B 3 , µ ≥ r 0 0 1 0 ⎪ ⎜ ⎟ ⎜ ⎟ 40 ⎝ h ⎠ 40 ⎝ h ⎠ r h ⎪ 0 ⎪ ⎛ ⎞ 2 3 − 3 3 ⎪ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ H R = 1 = 1 r 1 4 3 µ − 2 − r ⎟ µ − 3 + 3 r µ − 4 − 1 r µ − 5 + 1 r ⎟ + B 2 3 , r 2 h ≤ µ ≤ r ∫ F r sin θ dR 0 0 0 0 0 0 0 ⎜ µ ⎟ ⎨ ⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ h 3 π R R 4 ⎝ h ⎠ 10 ⎝ h ⎠ 30 ⎝ h ⎠ 15 ⎝ h ⎠ r h ⎪ ⎝ ⎠ 0 ⎪ − 3 − 1 ⎛ r ⎞ µ + B 3 3 , µ ≤ r ⎪ 0 0 ⎜ ⎟ ⎪ 4 ⎝ h ⎠ r 2 h ⎩ 0

  17. Final soluPon I 0 = ϕ + C ⎛ ⎞ 2 3 3 1 = r 4 − 2 3 + 3 ⎛ r ⎞ − 1 ⎛ r ⎞ B 0 ⎜ 0 0 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎛ ⎞ 10 ⎝ h ⎠ 10 ⎝ h ⎠ 2 1 + r ⎝ ⎠ 2 cos 2 ϕ ⎜ 0 ⎟ R 0 ⎜ ⎟ ⎧ 2 3 − 2 I 1 = − sin − 1 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ − 2 3 + 3 r − 1 r − 1 r + C 0 0 0 ⎜ ⎟ , r 0 ≤ h 2 ⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 1 + r 3 ⎪ 10 h 10 h 5 h 0 B 2 = r ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ⎜ ⎟ 0 2 ⎨ R 0 ⎝ ⎠ 4 2 3 − 3 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪ − 4 3 + r ⎟− 3 r + 1 r − 1 r 0 0 0 0 , h ≤ r 0 ≤ 2 h ⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 2 ⎪ I − 2 = ϕ + r ⎝ h ⎠ 10 ⎝ h ⎠ 30 ⎝ h ⎠ 15 ⎝ h ⎠ ⎩ 0 2 tan ϕ + C R 0 ⎧ 2 3 − 2 − 2 3 + 3 ⎛ r ⎞ − 1 ⎛ r ⎞ + 7 ⎛ r ⎞ 0 0 0 , r 0 ≤ h 2 4 ⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ I − 4 = ϕ + 2 r 2 tan ϕ + 1 r ( ) + C 4 tan ϕ sec 2 ϕ + 2 0 0 10 ⎝ h ⎠ 10 ⎝ h ⎠ 5 ⎝ h ⎠ ⎪ R 0 3 R 0 ⎪ 2 3 − 3 − 2 3 ⎪ B 3 = r − 4 3 + r ⎛ ⎟− 3 ⎞ ⎛ r ⎞ + 1 ⎛ r ⎞ − 1 ⎛ r ⎞ + 8 ⎛ r ⎞ 0 0 0 0 0 0 , h ≤ r 0 ≤ 2 h ⎨ ⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 4 ⎝ h ⎠ 10 ⎝ h ⎠ 30 ⎝ h ⎠ 15 ⎝ h ⎠ 5 ⎝ h ⎠ ⎪ ⎪ − 3 ⎛ ⎞ r ⎪ 0 , r 0 ≥ 2 h ⎜ ⎟ ⎝ h ⎠ ⎪ ⎩ ⎧ 2 3 6 I − 2 − 3 1 ⎛ r ⎞ I − 4 − 1 ⎛ r ⎞ I − 5 + B 3 I 0 , µ ≥ r 0 0 1 0 ⎪ ⎜ ⎟ ⎜ ⎟ 40 ⎝ h ⎠ 40 ⎝ h ⎠ r h ⎪ α = R 0 0 ⎪ ⎛ 2 3 − 3 ⎞ 3 ⎪ = r 1 4 3 I − 2 − r ⎛ ⎟ I − 3 + 3 ⎞ ⎛ r ⎞ I − 4 − 1 ⎛ r ⎞ I − 5 + 1 ⎛ r ⎞ ⎟ + B 2 3 I 0 , r 2 h ≤ µ ≤ r r ∫ 0 0 0 0 0 0 0 0 H R Rd ϕ ⎜ I 1 ⎟ ⎨ ⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ h 3 π 4 ⎝ h ⎠ 10 ⎝ h ⎠ 30 ⎝ h ⎠ 15 ⎝ h ⎠ r h r ⎪ ⎝ ⎠ 0 0 cos ϕ ⎪ R 0 − 3 − 1 ⎛ r ⎞ I 1 + B 3 3 I 0 , µ ≤ r µ = ⎪ 0 0 ⎜ ⎟ 2 1 + r ⎪ 4 ⎝ h ⎠ r 2 h 2 cos 2 ϕ ⎩ 0 0 R 0 u = 1 − (1 + α 2 ) µ 2 I − 3 = α (1 + α 2 ) ⎛ ⎞ ⎛ ⎞ 2 u ⎟ + α ) + tan − 1 u ( 1 − u 2 + log(1 + u ) − log(1 − u ) 2 log(1 + u ) − log(1 − u ) ⎟ + C ⎜ ⎜ 4 ⎝ ⎠ ⎝ α ⎠ I − 5 = α (1 + α 2 ) 2 ⎛ 10 u − 6 u 3 ⎞ ⎟ + α (1 + α 2 ) ⎛ 2 u ⎞ ) + tan − 1 u ⎛ ⎞ ⎟ + α (1 − u 2 ) 2 + 3 log(1 + u ) − log(1 − u ) ( ) 1 − u 2 + log(1 + u ) − log(1 − u ) 2 log(1 + u ) − log(1 − u ) ( ⎟ + C ⎜ ⎜ ⎜ 16 4 ⎝ ⎠ ⎝ α ⎠ ⎝ ⎠

  18. Graphic RepresentaPon of the SoluPon Petkova et al. 2018 ParPcle posiPon r 0 Voronoi cell φ R 0 wall Voronoi cell vertex

  19. Graphic RepresentaPon of the SoluPon Petkova et al. 2018 ParPcle posiPon Voronoi cell wall

  20. Graphic RepresentaPon of the SoluPon Petkova et al. 2018 ParPcle posiPon Voronoi cell wall

  21. Kernel IntegraPon in 2D Petkova et al. 2018

  22. Kernel IntegraPon in 3D Petkova et al. 2018 h\ps://github.com/mapetkova/kernel-integraPon

  23. Numerical Tests Petkova et al. 2018

  24. Comparison with the Common Density CalculaPon Methods Petkova et al. 2018 Disk galaxy Uniform cube SN shock Clumpy cloud

  25. Density CalculaPon Timing Tests Petkova et al. 2018

  26. ParPcle posiPons, density structure SPH MCRT Moves parPcles Propagates light to new posiPons through a density based on forces. grid. Thermal energy deposited in the parPcles

  27. Live radiaPon hydrodynamics SPH: Phantom (Price et al. 2017) + MCRT: CMacIonize (Vandenbroucke & Wood, in press) + Density mapping: Petkova et al. 2018

  28. Live radiaPon hydrodynamics (test): D-type expansion of an H II region Bisbas et al. 2015

  29. Live radiaPon hydrodynamics (test): D-type expansion of an H II region Bisbas et al. 2015

  30. Live radiaPon hydrodynamics (test): D-type expansion of an H II region Bisbas et al. 2015

  31. Live radiaPon hydrodynamics (test): D-type expansion of an H II region Bisbas et al. 2015

  32. Live radiaPon hydrodynamics (test)

  33. Live radiaPon hydrodynamics (test)

  34. Soon to come… Dale et al. 2012

  35. MulPple sources

  36. Open QuesPon: ResoluPon Koepferl et. al (2016)

  37. Summary ParPcle posiPons, density structure SPH MCRT Moves parPcles Propagates light to new posiPons through a density based on forces. grid. Thermal energy deposited in the parPcles

Recommend


More recommend