inverse free preconditioned krylov subspace method for
play

Inverse Free Preconditioned Krylov Subspace Method for Symmetric - PowerPoint PPT Presentation

Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems Qiang Ye University


  1. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems Qiang Ye University of Kentucky Based on joint works with G. Golub and P . Quillen RANMEP 2008 - NCTS

  2. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Outline Existing Methods 1 Inverse-free Preconditioned Krylov Subspace Method 2 Block Generalization 3 Blackbox Implementation 4 Numerical Examples 5 Interior Eigenvalues 6

  3. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Consider computing p smallest eigenvalues for Ax = λ Bx , A , B symmetric , B > 0 . (Eigenvalues: λ 1 < λ 2 ≤ · · · ≤ λ n ). A and B are large the spectrum at the left is clustered

  4. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Consider computing p smallest eigenvalues for Ax = λ Bx , A , B symmetric , B > 0 . (Eigenvalues: λ 1 < λ 2 ≤ · · · ≤ λ n ). A and B are large the spectrum at the left is clustered

  5. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Consider computing p smallest eigenvalues for Ax = λ Bx , A , B symmetric , B > 0 . (Eigenvalues: λ 1 < λ 2 ≤ · · · ≤ λ n ). A and B are large the spectrum at the left is clustered

  6. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Standard Lanczos for Ax = λ Bx : B -orthogonal basis Z m = [ z 0 , z 1 , · · · , z m ] for span { x 0 , B − 1 Ax 0 , ( B − 1 A ) 2 x 0 , · · · , ( B − 1 A ) m x 0 } Projection T m u = θ u ; ( T m = Z T m AZ m ) need B − 1 ; Convergence depends on λ 2 − λ 1 λ n − λ 1 . Several implementations, including implicitly restarted Lanczos - ARPACK

  7. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Standard Lanczos for Ax = λ Bx : B -orthogonal basis Z m = [ z 0 , z 1 , · · · , z m ] for span { x 0 , B − 1 Ax 0 , ( B − 1 A ) 2 x 0 , · · · , ( B − 1 A ) m x 0 } Projection T m u = θ u ; ( T m = Z T m AZ m ) need B − 1 ; Convergence depends on λ 2 − λ 1 λ n − λ 1 . Several implementations, including implicitly restarted Lanczos - ARPACK

  8. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Standard Lanczos for Ax = λ Bx : B -orthogonal basis Z m = [ z 0 , z 1 , · · · , z m ] for span { x 0 , B − 1 Ax 0 , ( B − 1 A ) 2 x 0 , · · · , ( B − 1 A ) m x 0 } Projection T m u = θ u ; ( T m = Z T m AZ m ) need B − 1 ; Convergence depends on λ 2 − λ 1 λ n − λ 1 . Several implementations, including implicitly restarted Lanczos - ARPACK

  9. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Standard Lanczos for Ax = λ Bx : B -orthogonal basis Z m = [ z 0 , z 1 , · · · , z m ] for span { x 0 , B − 1 Ax 0 , ( B − 1 A ) 2 x 0 , · · · , ( B − 1 A ) m x 0 } Projection T m u = θ u ; ( T m = Z T m AZ m ) need B − 1 ; Convergence depends on λ 2 − λ 1 λ n − λ 1 . Several implementations, including implicitly restarted Lanczos - ARPACK

  10. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Standard Lanczos for Ax = λ Bx : B -orthogonal basis Z m = [ z 0 , z 1 , · · · , z m ] for span { x 0 , B − 1 Ax 0 , ( B − 1 A ) 2 x 0 , · · · , ( B − 1 A ) m x 0 } Projection T m u = θ u ; ( T m = Z T m AZ m ) need B − 1 ; Convergence depends on λ 2 − λ 1 λ n − λ 1 . Several implementations, including implicitly restarted Lanczos - ARPACK

  11. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Standard Lanczos for Ax = λ Bx : B -orthogonal basis Z m = [ z 0 , z 1 , · · · , z m ] for span { x 0 , B − 1 Ax 0 , ( B − 1 A ) 2 x 0 , · · · , ( B − 1 A ) m x 0 } Projection T m u = θ u ; ( T m = Z T m AZ m ) need B − 1 ; Convergence depends on λ 2 − λ 1 λ n − λ 1 . Several implementations, including implicitly restarted Lanczos - ARPACK

  12. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Shift-and-invert Lanczos: Apply Lanczos to Bx = µ ( A − σ B ) x , µ = ( λ − σ ) − 1 Convergence depends on µ 2 − µ 1 µ n − µ 1 . need ( A − σ B ) − 1 ;

  13. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Jacobi-Davidson / JDCG: Projection on a subspace generated from solving correction eq. Need inner iteration to solve correction eq. Sensitive to inner iterations Good local convergence but global convergence not established

  14. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Jacobi-Davidson / JDCG: Projection on a subspace generated from solving correction eq. Need inner iteration to solve correction eq. Sensitive to inner iterations Good local convergence but global convergence not established

  15. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Jacobi-Davidson / JDCG: Projection on a subspace generated from solving correction eq. Need inner iteration to solve correction eq. Sensitive to inner iterations Good local convergence but global convergence not established

  16. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Jacobi-Davidson / JDCG: Projection on a subspace generated from solving correction eq. Need inner iteration to solve correction eq. Sensitive to inner iterations Good local convergence but global convergence not established

  17. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical LOBPCG - Locally optimal block preconditioned CG: Projection on span { x 0 , x 1 , M − 1 ( A − ρ 1 B ) x 1 } Simple and easy to implement Good global convergence but lack of theory

  18. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical LOBPCG - Locally optimal block preconditioned CG: Projection on span { x 0 , x 1 , M − 1 ( A − ρ 1 B ) x 1 } Simple and easy to implement Good global convergence but lack of theory

  19. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical LOBPCG - Locally optimal block preconditioned CG: Projection on span { x 0 , x 1 , M − 1 ( A − ρ 1 B ) x 1 } Simple and easy to implement Good global convergence but lack of theory

  20. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Basic Inverse free method: choose x 1 ∈ span { x 0 , ( A − ρ k B ) x 0 , · · · , ( A − ρ k B ) m x 0 } ˆ to solve Ax = λ Bx . Algorithm: Input m ≥ 1 and initial x 0 with � x 0 � = 1; ρ 0 = ρ ( x 0 ) ; For k = 0 , 1 , 2 , · · · until convergence, Construct a basis Z m = [ z 0 , z 1 , · · · , z m ] for K m = span { x k , ( A − ρ k B ) x k , · · · , ( A − ρ k B ) m x k } Form A m = Z T m ( A − ρ k B ) Z m and B m = Z T m BZ m ; Find A m v 1 = µ 1 B m v 1 (smallest); ρ k + 1 = ρ k + µ 1 and x k + 1 = Z m v 1 . End

  21. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Basic Inverse free method: choose x 1 ∈ span { x 0 , ( A − ρ k B ) x 0 , · · · , ( A − ρ k B ) m x 0 } ˆ to solve Ax = λ Bx . Algorithm: Input m ≥ 1 and initial x 0 with � x 0 � = 1; ρ 0 = ρ ( x 0 ) ; For k = 0 , 1 , 2 , · · · until convergence, Construct a basis Z m = [ z 0 , z 1 , · · · , z m ] for K m = span { x k , ( A − ρ k B ) x k , · · · , ( A − ρ k B ) m x k } Form A m = Z T m ( A − ρ k B ) Z m and B m = Z T m BZ m ; Find A m v 1 = µ 1 B m v 1 (smallest); ρ k + 1 = ρ k + µ 1 and x k + 1 = Z m v 1 . End

  22. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Construction of a basis for K m : orthonormal: Lanczos three-term but need to form B m = Z T m BZ m B -orthonormal: Arnoldi long recurrence but B m = I Choice of m : # of iterations decreases quadratically as m ↑ optimal for small m

  23. Existing Methods Inverse-free Preconditioned Krylov Subspace Method Block Generalization Blackbox Implementation Numerical Construction of a basis for K m : orthonormal: Lanczos three-term but need to form B m = Z T m BZ m B -orthonormal: Arnoldi long recurrence but B m = I Choice of m : # of iterations decreases quadratically as m ↑ optimal for small m

Recommend


More recommend