invariant nonholonomic riemannian structures on three
play

Invariant Nonholonomic Riemannian Structures on Three-Dimensional - PowerPoint PPT Presentation

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Dennis I. Barrett Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University Grahamstown, South Africa Department of Mathematics


  1. Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Dennis I. Barrett Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University Grahamstown, South Africa Department of Mathematics The University of Ostrava 8 July 2016 Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 1 / 30

  2. Introduction Nonholonomic Riemannian structure ( M , g , D ) Model for motion of free particle moving in configuration space M kinetic energy L = 1 2 g ( · , · ) constrained to move in “admissible directions” D Invariant structures on Lie groups are of the most interest Objective classify all left-invariant structures on 3D Lie groups characterise equivalence classes in terms of scalar invariants Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 2 / 30

  3. Outline Nonholonomic Riemannian manifolds 1 Nonholonomic isometries Curvature Nonholonomic Riemannian structures in 3D 2 3D simply connected Lie groups 3 Classification of nonholonomic Riemannian structures in 3D 4 Case 1: ϑ = 0 Case 2: ϑ > 0 Flat nonholonomic Riemannian structures 5 Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 3 / 30

  4. Outline Nonholonomic Riemannian manifolds 1 Nonholonomic isometries Curvature Nonholonomic Riemannian structures in 3D 2 3D simply connected Lie groups 3 Classification of nonholonomic Riemannian structures in 3D 4 Case 1: ϑ = 0 Case 2: ϑ > 0 Flat nonholonomic Riemannian structures 5 Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 4 / 30

  5. Nonholonomic Riemannian manifold ( M , g , D ) Ingredients ( M , g ) is an n -dim Riemannian manifold D is a nonintegrable, rank r distribution on M Assumption D is completely nonholonomic: if D 1 = D , D i +1 = D i + [ D i , D i ] , i ≥ 1 then there exists N ≥ 2 such that D N = TM Chow–Rashevskii theorem if D is completely nonholonomic, then any two points in M can be joined by an integral curve of D Orthogonal decomposition TM = D ⊕ D ⊥ projectors P : TM → D and Q : TM → D ⊥ Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 5 / 30

  6. Nonholonomic geodesics D’Alembert’s Principle Let � ∇ be the Levi-Civita connection of ( M , g ). An integral curve γ of D is called a nonholonomic geodesic of ( M , g , D ) if � γ ( t ) ∈ D ⊥ ∇ ˙ γ ( t ) ˙ γ ( t ) for all t Equivalently: P ( � ∇ ˙ γ ( t ) ˙ γ ( t )) = 0 for every t . nonholonomic geodesics are the solutions of the Chetaev equations: r � d ∂ L x i − ∂ L λ a ϕ a , ∂ x i = i = 1 , . . . , n dt ∂ ˙ a =1 L = 1 2 g ( · , · ) is the kinetic energy Lagrangian ϕ a = � n i dx i span the annihilator D ◦ = g ♭ ( D ⊥ ) of D i =1 B a λ a are Lagrange multipliers Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 6 / 30

  7. The nonholonomic connection NH connection ∇ : Γ( D ) × Γ( D ) → Γ( D ) ∇ X Y = P ( � ∇ X Y ) , X , Y ∈ Γ( D ) affine connection parallel transport only along integral curves of D depends only on ( D , g | D ) and the complement D ⊥ Characterisation ∇ is the unique connection Γ( D ) × Γ( D ) → Γ( D ) such that ∇ g | D ≡ 0 and ∇ X Y − ∇ Y X = P ([ X , Y ]) Characterisation of nonholonomic geodesics integral curve γ of D ⇐ ⇒ ∇ ˙ γ ( t ) ˙ γ ( t ) = 0 for every t is a nonholonomic geodesic Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 7 / 30

  8. Nonholonomic isometries NH-isometry between ( M , g , D ) and ( M ′ , g ′ , D ′ ) diffeomorphism φ : M → M ′ such that � D = φ ∗ g ′ � φ ∗ D ⊥ = D ′⊥ � � φ ∗ D = D ′ , and g D ′ Properties preserves the nonholonomic connection: ∇ = φ ∗ ∇ ′ establishes a 1-to-1 correspondence between the nonholonomic geodesics of the two structures preserves the projectors: φ ∗ P ( X ) = P ′ ( φ ∗ X ) for every X ∈ Γ( TM ) Left-invariant nonholonomic Riemannian structure ( M , g , D ) M = G is a Lie group left translations L g : h �→ gh are NH-isometries Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 8 / 30

  9. Curvature ∇ is not a vector bundle connection on D Riemannian curvature tensor not defined Schouten curvature tensor K : Γ( D ) × Γ( D ) × Γ( D ) → Γ( D ) K ( X , Y ) Z = [ ∇ X , ∇ Y ] Z − ∇ P ([ X , Y ]) Z − P ([ Q ([ X , Y ]) , Z ]) Associated (0 , 4)-tensor � K ( W , X , Y , Z ) = g ( K ( W , X ) Y , Z ) � K ( X , X , Y , Z ) = 0 K ( W , X , Y , Z ) + � � K ( X , Y , W , Z ) + � K ( Y , W , X , Z ) = 0 Decompose � K R = component of � � K that is skew-symmetric in last two args C = � � K − � R ( � R behaves like Riemannian curvature tensor) Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 9 / 30

  10. Ricci-like curvatures Ricci tensor Ric : D × D → R � r � Ric( X , Y ) = R ( X a , X , Y , X a ) a =1 ( X a ) r a =1 is an orthonormal frame for D Scal = � r a =1 Ric( X a , X a ) is the scalar curvature Ricci-type tensors A sym , A skew : D × D → R r � � A ( X , Y ) = C ( X a , X , Y , X a ) a =1 Decompose A A sym = symmetric part of A A skew = skew-symmetric part of A Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 10 / 30

  11. Outline Nonholonomic Riemannian manifolds 1 Nonholonomic isometries Curvature Nonholonomic Riemannian structures in 3D 2 3D simply connected Lie groups 3 Classification of nonholonomic Riemannian structures in 3D 4 Case 1: ϑ = 0 Case 2: ϑ > 0 Flat nonholonomic Riemannian structures 5 Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 11 / 30

  12. Nonholonomic Riemannian structures in 3D Contact structure on M We have D = ker ω , where ω is a 1-form on M such that ω ∧ d ω � = 0 fixed up to sign by condition: d ω ( Y 1 , Y 2 ) = ± 1 , ( Y 1 , Y 2 ) o.n. frame for D Reeb vector field Y 0 ∈ Γ( TM ): i Y 0 ω = 1 and i Y 0 d ω = 0 Two natural cases (1) Y 0 ∈ D ⊥ ∈ D ⊥ (2) Y 0 / Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 12 / 30

  13. The first scalar invariant ϑ ∈ C ∞ ( M ) Extension of g | D depending on ( D , g | D ) extend g | D to a Riemannian metric ˜ g such that Y 0 ⊥ ˜ g D and g ( Y 0 , Y 0 ) = 1 ˜ angle θ between Y 0 and D ⊥ is given by cos θ = | ˜ g ( Y 0 , Y 3 ) | 0 ≤ θ < π D ⊥ = span { Y 3 } � , 2 , g ( Y 3 , Y 3 ) ˜ scalar invariant: ϑ = tan 2 θ ≥ 0 Y 0 ∈ D ⊥ ⇐ ⇒ ϑ = 0 Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 13 / 30

  14. Curvature in 3D Curvature invariants κ, χ 1 , χ 2 ∈ C ∞ ( M ) � � � � κ = 1 � ♯ � ♯ D ◦ A ♭ D ◦ A ♭ 2 Scal χ 1 = − det( g sym ) χ 2 = det( g skew ) preserved by NH-isometries (i.e., isometric invariants) � R ≡ 0 ⇐ ⇒ κ = 0 � C ≡ 0 ⇐ ⇒ χ 1 = χ 2 = 0 Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 14 / 30

  15. Outline Nonholonomic Riemannian manifolds 1 Nonholonomic isometries Curvature Nonholonomic Riemannian structures in 3D 2 3D simply connected Lie groups 3 Classification of nonholonomic Riemannian structures in 3D 4 Case 1: ϑ = 0 Case 2: ϑ > 0 Flat nonholonomic Riemannian structures 5 Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 15 / 30

  16. Bianchi–Behr classification of 3D Lie algebras Unimodular algebras and (simply connected) groups Lie algebra Lie group Name Class R 3 R 3 Abelian Abelian H 3 Heisenberg nilpotent h 3 se (1 , 1) SE(1 , 1) semi-Euclidean completely solvable � se (2) SE(2) Euclidean solvable � sl (2 , R ) SL(2 , R ) special linear semisimple su (2) SU(2) special unitary semisimple Non-unimodular (simply connected) groups G h G h Aff( R ) 0 × R , G 3 . 2 , G 3 . 3 , 3 . 4 ( h > 0 , h � = 1) , 3 . 5 ( h > 0) Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 16 / 30

  17. Left-invariant distributions on 3D groups Killing form K : g × g → R , K ( U , V ) = tr[ U , [ V , · ]] K is nondegenerate ⇐ ⇒ g is semisimple Completely nonholonomic left-invariant distributions on 3D groups no such distributions on R 3 or G 3 . 3 Up to Lie group automorphism: exactly one distribution on H 3 , SE(1 , 1), � SE(2), SU(2) and non-unimodular groups exactly two distributions on � SL(2 , R ): � denote SL(2 , R ) hyp if K indefinite on D � SL(2 , R ) ell definite '' '' '' '' '' Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 17 / 30

  18. Outline Nonholonomic Riemannian manifolds 1 Nonholonomic isometries Curvature Nonholonomic Riemannian structures in 3D 2 3D simply connected Lie groups 3 Classification of nonholonomic Riemannian structures in 3D 4 Case 1: ϑ = 0 Case 2: ϑ > 0 Flat nonholonomic Riemannian structures 5 Dennis I. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 18 / 30

Recommend


More recommend