Research on nanostructured materials for the energy and electronic B M.Ricardo Ibarra M Institute of Nanoscience of Aragón
OUTLINE -Presentation of the Institute of Nanoscience of Aragón -Nanomaterials research in Aragón
INSTITUTE OF NANOSCIENCE OF ARAGON INSTITUTE OF NANOSCIENCE OF ARAGON RESEARCH LINES RESEARCH LINES NANOBI OMEDI CI NE: NANOBI OMEDI CI NE: • Therapy Therapy: : • • • Drug Drug Delivery Delivery Hypertherm y • • Hypertherm y • Diagn Diagnó óstic stic: : • • Contrast • Contrast agent agent ( ( biom olecular biom olecular and and celular celular targeting targeting) ) Biosensors: : Quantitative Quantitative lateral lateral flow flow . . • • Biosensors NANOSTRUCTURED MATERI ALS: NANOSTRUCTURED MATERI ALS: Mem branes and and nanoporous nanoporous film s film s • Mem branes • • Carbon Carbon nanotubes nanotubes • • Organic Organic functionals functionals m aterials m aterials ( ( dendrim ers dendrim ers, , m esosocopic m esosocopic liquid liquid crystals crystals • • Core • Core- - shell shell m agnetic m agnetic nanoparticles nanoparticles PHYSI CS AT THE NANOSCALE: PHYSI CS AT THE NANOSCALE: • • Thin film s film s: : m agnetic m agnetic heteroestructures heteroestructures, , superlattices superlattices… … Thin • • Micro- - Nanocircuits Nanocircuits: : Spintronics Spintronics, quantum , quantum effects effects, , nanow ires nanow ires, , Micro nanoconstrictions, , MEMS&NEMS MEMS&NEMS... ... nanoconstrictions
1. Laboratory of thin films growing -LASER ABLATION -SPUTTERING -MBE -PECVD 20 1/ nm 20 1/ nm Fe 3 O 4 / MgO epitaxial thin film
2. Laboratory of lithography PRESENT (20 m 2 , CLASS 10.000) - Photoresist station - mask aligner - e-beam evaporator - RIE / IBE - PECVD - μ contacts, optical microscope, saw NEW (125 m 2 , CLASS 10.000 & CLASS 100)
2. Laboratory of lithography MASK ALIGNER PHOTORESIST STATION MICROCONTACTS DRY ETCHING RIE/IBE ELECTRON BEAM EVAPORATOR
3. Laboratory of scanning probe microscopy (SPM) TiO TiO 2 2 LHe cryostat UHV sample preparation chamber LEED - Auger STM head LEED pattern from a Quadrupole Cu (1 1 13) surface mass spectrometer (regular array of steps) Ion gun Evaporators Low Temperature Temperature UHV UHV - - STM STM Low
4. Laboratory of electron microscopy: TEM, SEM HRTEM: FEI TECNAI G2 F30 UHRTEM: Cs correctors (Future project) -Field Emission 80keV-300keV -Gatan Energy Filter (TRIDIEM) SiO Fe -STEM (EELS) Fe 2 -HAADF, Z-contrast Fe -Tomography, 3D image -Lorentz Lens SiO 2
4. Laboratory of “Dual beam” microscopy Imaging Ectching Deposition Analysis Nanopatterning e-beam lithography
5. Laboratory of biomedical applications Celules and bacterials separation Orbital shaker Virus and DNA separation Peptide chromatography U-V spectrometer Cell culture&nanoparticles
5. Laboratory of biomedical applications (“in-vitro”) Magnetic Hyperthermy Anatomopatology 25 1.00 % wt 0.67 % wt 20 0.50 % wt 0.25 % wt T - T (t=0) ºC 15 10 5 0 0 10 20 30 40 50 60 70 Tiempo (min)
5. Laboratory of biomedical applications (“in-vivo”) Veterinary Hospital Suregery room Endoscopic surgery
6. Laboratory of synthesis and functionalización of nanosystems Optical microscopy Laminar flow cabine Nanoparticles
7. Laboratory of thin films characterization X- -RAY DIFFRACTION HIGH RESOLUTION D8 RAY DIFFRACTION HIGH RESOLUTION D8 Brucker Brucker X 7 10 5 002 MgO 10 10 6 004 Fe 3 O 4 10 5 Thickness = 40.0 nm 4 10 Laue oscillations 10 4 Counts Counts 3 10 3 10 2 10 10 2 1 10 1 10 0 10 0.5 1 1.5 2 2.5 3 3.5 4 41 41.5 42 42.5 43 43.5 44 44.5 45 2 θ (deg) 2 θ (deg) X-ray reflectivity Laue oscillations high degree of coherency in the film
7. Laboratory of surface characterization (XPS &Auger) Fe 2p 3/2 magnetita wüstita (mezcla) 1,6 711.2 eV hematita 1,4 710.2 eV 1,2 Fe 2p 1/2 Normalized Intensity 3+ satélite Fe 1,0 719.7 eV 3+ satélite Fe 0,8 733.7 eV 0,6 0,4 0 Fe 707eV 0,2 2+ satélite Fe 2+ 715.7 eV satélite Fe 0,0 729.3 eV 740 735 730 725 720 715 710 705 700 BE (eV) Iron ionic states in different oxides
7. Laboratory of magnetic characterization VSM Temperature range 100 K -800 K High sensitivity (~10-6 emu). Magnetic field up to 2 Tesla Hystheresis loops of a epitaxial Fe thin film with the field applied along [100] y [110] directions
OUTLINE -Presentation of the Institute of Nanoscience of Aragón -Nanomaterials research in Aragón
NANOMATERIALS FOR THE ELECTRONICS -Growth of Epitaxial Half-metal Oxides: Fe 3 O 4 , Sr 2 CrReO 6 -Growth of Epitaxial Metals: Fe -Epitaxial heterostructures for magnetic tunnel junctions and spin filtering -Magnetoresistive granular materials: Fe/MgO -Magnetic nanowires -Magnetic nanoconstrictions -Magnetic biosensors -Superconducting nanowires
Thin- -film film epitaxial epitaxial heterostructures for Spin Electronics Thin heterostructures for Spin Electronics New chambers to be installed before June 2009: dedicated PLD + dedicated sputtering The tool: UHV combined PLD-sputtering system High-quality Thin Films / Heterostructures succesfully grown to date: • MgO (001) // Fe 3 O 4 • MgO (001) // Fe • MgO (001) // Fe 3 O 4 /MgO/Fe • CG // [Fe/MgO] N • SrTiO 3 (001) // Sr 2 CrReO 6 • MgO (001) // CoFe 2 O 4
Thin- -film film epitaxial epitaxial heterostructures for Spin Electronics Thin heterostructures for Spin Electronics
Transport measurements in Fe nanoconstrictions microprobes microprobes b) b) a) a) Fe Fe SiO 2 SiO 2 500 nm 500 nm 500 nm 500 nm 500 nm 500 nm 100 µm 100 µm 100 µm 100 µm 100 µm 100 µm 24K 24K AP AP 30K 30K H ⏐⏐ I H ⏐⏐ I 3 3 end 35K 35K 10 etching MR(%) MR(%) 2 2 start 8 depos. R (k Ω ) Pt-C 1 1 P P start 6 end etching depos. 0 0 Pt-C 4 -4 -4 -2 -2 0 0 2 2 4 4 0 2 4 6 8 H(kOe) H(kOe) t (min)
NANOMATERIALS FOR THE ENERGY -Polimer Electrolyte Membrane Fuel Cells (PEMFCs) Two Polymer Families to withstand hight temperatures have been proposed: Polyetherimides (PEI), polysulfones (PSU) -Eutectic Ceramic -Nanoeutectics - Directionally solidified eutectics for catalysers - Microtubular Solid Oxide Fuel Cells -Nanotubes compsites -Electroactive polymer/carbon nanotube composite materials -Conducting polymer/carbon nanotube composite materials -TiO2 nanotube:Hydrogen production & organic contaminants degradation
An Innovative Membrane for PEMFCs: ZEOCELL PROJECT (Nanostructured Electrolyte Membranes Based on Polymer/Ionic Liquids/Zeolite Composites For High Temperature PEM Fuel Cell) INA. University of Zaragoza (Spain)
GENERAL PROJECT OBJECTIVE • To develop nanostructured electrolyte membranes suitable for operating at 150º-200ºC in high temperature Polimer Electrolyte Membrane Fuel Cells (PEMFCs) WHY HIGH TEMPERATURE PEMFCs? MAIN CHALLENGES BENEFITS OF T INCREASE PROBLEMS/SPECIFIC CHALLENGES • • CO tolerance Increase (dirty H 2 ) Electrocatalysts sintering and recrystallization • • Reaction Rate Increase Fuel cross-over (Utility decrease) • • Electrolyte performance (dehydration) Polarization effect Reduction • Durability (degradation/corrosion ) • Operating Voltage Increase • Water management • Cogeneration possibilities 25
MATERIALS TO BRIDGE THE GAP ZEOLI TES I ONI C LI QUI DS POLYMERS Advantages Advantages Advantages -High chemical and thermal -Very high ionic - High ionic conductivity stability conductivity -Elasticity, plasticity (non - Low price -Thermal stability fragile) - Hydrophilicity (gas -Zero volatility -Procesability humidification is not necessary for proton conduction) - Flexibility -Well defined nanoporous structures, tailor made porosity and modulable adsorption properties (fuel-cross over) Disadvantages - Catalytic properties ( MEAs) Disadvantages - High fuel cross over -Necessity to be confined -Thermal stability into a matrix to be used as Disadvantages an electrolyte - Relative l ow ionic conductivity - Mechanical properties (f ragility ) 26
MATERIALS TO BRIDGE THE GAP + - ZEOLITES & IMIDAZOLIUM/ POLYMERS MICROPOROUS AMMONIUM BASED (PEI, PSU, s-PEEK, doped PBI) RELATED MATERIALS IONIC LIQUIDS 2-D NANOSTRUCTURED COMPOSITE MEMBRANES (ordered or randomly porous membranes) (top view) POLIMERIC MATRIX 27 IONIC ZEOLITE MEMBRANE LIQUID (cross section)
Nanoeutectics Nanoeutectics Prof. V. ORERA Prof. V. ORERA Eutectics are a paradigm for pattern structures of size scales down to submicron and nanometer with clean interfaces. J. Llorca & V.M. Orera, Prog. Mat. Sci. 51(2006) 711-810 YAG Growth direction YSZ Al 2 O 3 YSZ YAG PB Oliete et al. Adv. Mat (2007) YSZ Al 2 O 3 Microstructure of LFZ fabricated YSZ Al2O3-YAG-YSZ ternary eutectic YAG 2009
Recommend
More recommend