Transmission over Unreliable Channels ๏จ The Channel Coding Problem: X Y ๐ W Channel Channel Channel ๐(๐ง|๐ฆ) Decoder Encoder ๏จ W ๏ฅ {1,2,โฆ, 2 ๐๐ } = message set of rate R ๏จ X = (x 1 x 2 โฆ x n ) = codeword input to channel ๏จ Y = (y 1 y 2 โฆ y n ) = codeword output from channel = decoded message P(error) = P{ W ๏น ๐} ๏จ ๐
Shannonโs Channel Coding Theorem ๏จ Using the channel n times: X n โข Y n โข โข โข โข โข โข โข โข โข
Simple examples ๏จ Noiseless typewriter: 1 1 2 2 Input X Output Y 3 3 4 4 Number of noise free symbols = 4 Can transmit R = ๐๐๐ 2 4 = 2 bits/transmission
Simple examples ๏จ Noisy typewriter (type 1): 0.5 1 1 0.5 2 2 Input X Output Y 0.5 3 3 0.5 4 4 Number of noise free symbols = 2 Can transmit R = ๐๐๐ 2 2 = 1 bit/transmission
Simple examples ๏จ Noisy typewriter (type 2): 0.5 1 1 0.5 2 2 Input X Output Y 0.5 3 3 0.5 4 4 Number of noise free symbols = 2 (apparently, surprise later) Can transmit R โฅ ๐๐๐ 2 2 = 1 bit/transmission
Simple examples ๏จ Noisy typewriter (type 3): 0.5 1 1 0.5 0.5 2 2 Input X Output Y 0.5 0.5 3 3 0.5 0.5 4 4 0.5 Number of noise free symbols = 2 Use X=1 and X=3 Can transmit R = ๐๐๐ 2 2 = 1 bit/transmission
Simple examples ๏จ A tricky typewriter: 0.5 1 1 0.5 2 2 Input X Output Y 0.5 3 3 0.5 4 4 0.5 5 5 How many noise free symbols? Clearly at least 2, hopefully more.
Simple examples ๏จ Consider the n=2 extension of the channel: X 1 1 3 2 4 5 X 2 1 2 3 Which code 4 squares to pick? 5
Simple examples ๏จ Consider the n=2 extension of the channel: X 1 3 1 2 4 5 X 2 Let {X 1 ,X 2 } be 1 {(1,1), (2,3), 2 (3,5), (4,2), (5,4)} 3 4 5
Reminder of the channel ๏จ A tricky typewriter: 0.5 1 1 0.5 2 2 Input X Output Y 0.5 3 3 0.5 4 4 0.5 5 5 How many noise free symbols? Clearly at least 2, hopefully more.
Simple examples ๏จ Looking at the outputs: Y 1 3 1 2 4 5 Y 2 Let {X 1 ,X 2 } be 1 {(1,1), (2,3), 2 (3,5), (4,2), (5,4)} 3 4 5
Simple examples - observations ๏จ Note that we get 5 noise-free symbols in n=2 transmissions. ๐๐๐ 2 5 ๏จ Thus achieve rate 2 = 1.16 bits/transmission ๏จ with P(error) = 0. ๏จ For arbitrarily small P(error) can use long codes (n ๏ ๏ฅ ) to achieve log 2 5/2=1.32 bits/transmission, the channel capacity.
The Binary Symmetric Channel (BSC) ๏จ How many noise-free symbols? 1- ๏ฅ 0 0 ๏ฅ X Y ๏ฅ 1- ๏ฅ 1 1 A.: Clearly for n=1 there are none. How about using n large?
Shannonโs Second Theorem ๏จ Using the channel ๐ times: X n Y n โข โข โข โข โข
Shannonโs Second Theorem ๏จ The Information Channel Capacity of a discrete memoryless channel is ๏จ ๐ท = max ๐ฝ(๐; ๐) . ๐(๐ฆ) ๏จ Note: ๐ฝ ๐; ๐ is a function of ๐ ๐ฆ, ๐ง = ๐ ๐ฆ ๐ ๐ง ๐ฆ . ๏จ But ๐ ๐ง ๐ฆ is fixed by the channel.
Shannonโs Second Theorem ๏จ Direct Part: ๏จ If R < C ๏ There exists a code with P(error) ๏ 0 ๏จ Converse Part: ๏จ If R > C ๏ Communication with P(error) ๏ 0 ๏จ is not possible.
Shannonโs Second Theorem ๏จ Theorem: For a discrete memoryless channel, all rates ๐ below the information channel capacity ๐ท are achievable with maximum probability of error arbitrarily small. Conversely, if the rate is above ๐ท, the probability of error is bounded away from zero. ๏จ Proof: Achievability: Use random coding to generate codes with a particular ๐ ๐ฆ distribution in the codewords. Then show that the average P(error) tends to zero with n ๏ ๏ฅ if ๐ < ๐ท. Then expurgate bad codewords to get a code with small maximum P(error) .
Shannonโs Second Theorem ๏จ Proof of Converse (sketch using AEP): Y n ๏ 2 ๐๐ผ(๐) Y n X n โข โข โข โข โข typical balls ๏ 2 ๐๐ผ(๐|๐)
Shannonโs Second Theorem ๏จ Proof of Converse (sketch using AEP): ๏จ Recall the sphere packing problem. Maximum number of non-overlapping balls is bounded by 2 ๐๐ผ(๐) 2 ๐ โค 2 ๐๐ผ(๐|๐) = 2 ๐๐ฝ(๐:๐) โค 2 ๐๐ท ๏จ Thus 2 ๐ โค 2 ๐ท and ๐ โค ๐ท. ๏จ A formal proof uses Fanoโs inequality.
Example: The Binary Symmetric Channel ๏จ 1- ๏ฅ 0 0 ๏ฅ X Y ๏ฅ 1- ๏ฅ 1 1 1 ๏จ C = max (H(Y) โ H(Y|X)) C( ๏ฅ ) ๏จ = 1 โ h( ๏ฅ ) bits/transmission ๏จ Note: C=0 for ๏ฅ = ยฝ . ๏ฅ 0 ยฝ 1
Example: The Binary Erasure Channel 1- ๏ก ๏จ 0 0 ๏ก X E Y ๏ก 1- ๏ก 1 1 C( ๏ก ) ๏จ C = max (H(Y) โ H(Y|X)) ๏จ = 1 โ ๏ก bits/transmission Note: C=0 for ๏ก = 1. ๏ก Capacity is achieved with ยฝ 0 1 ๐ ๐ = 0 = ๐ ๐ = 1 = ยฝ .
Example: The Z Channel ๏จ 0 0 ยฝ X Y ยฝ 1 1 ๐๐๐ข ๏จ C = max (H(Y) โ H(Y|X)) = ๐๐๐ 2 5 โ 2 = 0.322 ๐ข๐ . ๐(๐ฆ) 2 ๏จ Note: Maximizing ๐ ๐ = 1 = 5 . ๏จ Homework: Obtain this capacity.
Changing Z channel into BEC ๏จ Show that code {01, 10} can transform a Z channel into a BEC. ๏จ What is a lower bound to capacity of the Z channel?
Typewriter type 2: ยฝ ๏จ ยฝ ยฝ ยฝ Sum channel: 2 C = 2 C1 + 2 C2 where C 1 = C 2 = 0.322 C = 1,322 bits/channel use How many noise free symbols?
Example: Noisy typewriter ยฝ ๏จ A A ยฝ B B C C X Y D D โข E โข โข Z Z ๏จ C = max (H(Y) โ H(Y|X)) ๏จ = ๐๐๐ 2 26 โ ๐๐๐ 2 2 = ๐๐๐ 2 13 bits/transmission ๏จ Achieved with uniform distribution on the inputs.
Remark: ๏จ For this example, we can also achieve ๏จ ๐ท = ๐๐๐ 2 13 bits/transmission with P(error)=0 and ๏จ n = 1 by transmitting alternating input symbols, i.e., ๏จ X = {A C E โฆ Z}.
Differential Entropy ๏จ Let ๐ be a continuous random variable with density ๐ ๐ฆ and support ๐ . The differential entropy of ๐ is โ ๐ = โ ๐ ๐ฆ log ๐ ๐ฆ ๐๐ฆ (if it exists). ๐ Note: Also written as โ ๐ .
Examples: Uniform distribution ๏จ Let ๐ be uniform in the interval 0, ๐ . Then 1 ๏จ ๐ ๐ฆ = ๐ in the interval and ๐ ๐ฆ = 0 outside. ๐ 1 1 ๏จ โ ๐ = โ ๐ ๐๐๐ ๐ ๐๐ฆ = log ๐ 0 ๏จ Note that โ ๐ can be negative for ๐ < 1. ๏จ However, 2 โ(๐) = 2 log ๐ = ๐ is the size of the support set, which is non-negative.
Example: Gaussian distribution โ๐ฆ 2 1 ๏จ Let ๐ ~ ๏ฆ ๐ฆ = 2 ๏ฐ๏ณ 2 ๐๐ฆ๐ ( 2 ๏ณ 2 ) ๐ฆ 2 2 ๏ณ 2 โ ๐๐ 2 ๏ฐ๏ณ 2 ] ๐๐ฆ ๏จ Then โ ๐ = โ ๏ฆ = โ ๏ฆ ๐ฆ [โ ๐น๐ 2 1 2 ๐๐ 2 ๏ฐ ๏ณ 2 ๏จ = 2 ๏ณ 2 + 1 2 ๐๐ ( 2 ๏ฐ e ๏ณ 2 ) nats ๏จ = 1 2 ๐๐๐ ( 2 ๏ฐ e ๏ณ 2 ) bits ๏จ Changing the base we have โ ๐ =
Relation of Differential and Discrete Entropies ๏จ Consider a quantization of X, denoted by X ๏ ๏ ๏จ Let X ๏ = ๐ฆ ๐ i nside the ๐ th interval. Then ๐ผ(๐ ๏ ) = - ๐ ๐ ๐๐๐ ๐ ๐ ๐ = - ๏ ๐(๐ฆ ๐ ) ๐๐๐ ๐(๐ฆ ๐ ) - ๐๐๐ ๏ ๐ ๏ โ ๐ โ log ๏
Differential Entropy ๏จ So the two entropies differ by the log of the quantization level ๏ . ๏จ We can define joint differential entropy, conditional differential entropy, K-L divergence and mutual information with some care to avoid infinite differential entropies.
K-L divergence and Mutual Information ๏จ ๐ ๏จ ๐ธ(๐ g) = ๐ ๐๐๐ ๐ ๐(๐ฆ,๐ง) ๏จ ๐ฝ ๐; ๐ = ๐ ๐ฆ, ๐ง ๐๐๐ ๐ ๐ฆ ๐(๐ง) ๐๐ฆ ๐๐ง ๏จ Thus , I(X;Y) = h(X) + h(Y) โ h(X,Y). Note: h(X) can be negative, but I(X;Y) is always ๏ณ 0.
Differential entropy of a Gaussian vector ๏จ Theorem: Let ๐ be a Gaussian n -dimensional vector with mean ๏ญ and covariance matrix ๐ฟ. Then 2 log((2 ๏ฐ ๐) ๐ ๐ฟ ) 1 ๏จ โ ๐ = ๏จ where ๐ฟ denotes the determinant of ๐ฟ. ๏จ Proof: Algebraic manipulation.
The Gaussian Channel Z~N (0, N I) X ๐ W Y Channel Channel + Decoder Encoder Power Constraint: EX 2 โคP
The Gaussian Channel ๏จ Z~N (0, N I) X Y ๐ W Channel Channel + Decoder Encoder Power constraint: EX 2 โคP ๏จ W ๏ฅ {1,2,โฆ, 2 ๐๐ } = message set of rate R ๏จ X = (x 1 x 2 โฆ x n ) = codeword input to channel ๏จ Y = (y 1 y 2 โฆ y n ) = codeword output from channel = decoded message P(error) = P{ W ๏น ๐} ๏จ ๐
The Gaussian Channel ๏จ Using the channel n times: X n โข Y n โข โข โข โข โข โข โข โข โข
The Gaussian Channel ๏จ ๏จ C๐๐๐๐๐๐ข๐ง ๐ท = max ๐ฝ(๐; ๐) f(x): EX 2 โคP ๏จ ๐ฝ ๐; ๐ = โ ๐ โ โ ๐ ๐ = โ ๐ โ โ ๐ + ๐|๐ 1 1 ๏จ = โ ๐ โ โ ๐ โค 2 log 2 ๏ฐ e ๐ + ๐ โ 2 log 2 ๏ฐ e ๐ 1 ๐ ๏จ = 2 log 1 + ๐ bits/transmission
The Gaussian Channel ๏จ ๏จ The capacity of the discrete time additive Gaussian channel: 1 ๐ ๏จ ๐ท = 2 log 1 + ๐ bits/transmission ๏จ achieved with X ~ N(0 , P).
Bandlimited Gaussian Channel ๏จ Consider the channel with continuous waveform inputs x(t) ๐ 1 ๐ ๐ฆ 2 ๐ข ๐๐ข โค ๐) and Bandwidth with power constraint ( 0 limited to W. The channel has white Gaussian noise with power spectral density N 0 /2 watt/Hz. ๏จ In the interval (0,T) we can specify the code waveform by 2WT samples (Nyquist criterion). We can transmit these samples over discrete time Gaussian channels with noise variance N 0 /2. This gives ๐ ๏จ ๐ท = ๐ log ( 1+ ๐ 0 ๐ ) bit/second
Bandlimited Gaussian Channel ๏จ ๐ ๏จ ๐ท = ๐ log ( 1+ ๐ 0 ๐ ) bit/second ๏จ Note: If W ๏ ๏ฅ ๐ ๐ 0 ๐๐๐ 2 ๐ bits/second. ๏จ we have C =
Bandlimited Gaussian Channel ๐ ๐ be the spectral density ๏ฎ in bits per second ๏จ Let per Hertz. Also let ๐ = ๐น ๐ ๐ where ๐น ๐ is the available energy per information bit. ๏จ We get ๐ ๐ท ๐น ๐ ๐ ๏จ ๐ โค ๐ = log ( 1+ ๐ 0 ๐ ) bit/second. ๏จ Thus 2 ๏ฎ โ1 ๐น ๐ ๏จ ๐ 0 โฅ ๏ฎ This relation defines the so called Shannon Bound.
The Shannon Bound 2 ๏ฎ โ1 ๐น ๐ ๏จ ๐ 0 โฅ ๏ฎ ๐น ๐ ๐น ๐ ๏ฎ ๏ฎ ๐ 0 (dB) โ ๐ 0 Shannon Bound ๏ 0 0.69 -1.59 โ 5 0.1 0.718 -1.44 โ โข 4 0.25 0.757 -1.21 0.5 0.828 -0.82 โ 3 1 1 0 โ โข 2 2 1.5 1.76 ๐น ๐ โ โข ๐ 0 (dB) 1 4 3.75 5.74 ๏ผ 8 31.87 15.03 ๏ผ ๏ผ ๏ผ ๏ผ ๏ผ ๏ผ ๏ผ โข -1 0 1 2 3 4 5 6
Shannonโs Water Filling Solution
Parallel Gaussian Channels ๏จ 3 2.5 2 1
Example of Water Filling ๏จ Channels with noise levels 2, 1 and 3. ๏จ Available power = 2 1 0.5 1 1.5 1 0 ๏จ Capacity= 2 log (1+ 2 ) + 2 log (1+ 1 ) + 2 log (1+ 3 ) ๏จ Level of noise + signal power = 2.5 ๏จ No power allocated to the third channel.
Parallel Gaussian Channels ๏จ 3 2.5 2 1
Differential capacity Discrete memoryless channel as a band limited channel
Multiplex strategies (TDMA, FDMA) ๏ฌ P j ๏ฌ j
Multiplex strategies (non-orthonal CDMA) P j ๏ฌ 1 ๐ 2 log (1 + ๐+ ๐โ1 ๐ ) j Discrete memoryless channel as a band limited channel M ๐ = 1 (1 + ๐๐ ๐ท 2 log ๐ ) Aggregate capacity: : j=1
TDMA or FDMA versus CDMA Orthogonal schemes: ๏จ Bandwidth limitation (2WT dimensions) Number of Users Non-orthogonal CDMA (log has no cap) Aggregate Power
Multiple User Information Theory ๏จ Building Blocks: ๏จ Multiple Access Channels (MACs) ๏จ Broadcast Channels (BCs) ๏จ Interference Channels (IFCs) ๏จ Relay Channels (RCs) ๏จ Note: These channels have their discrete memoryless and Gaussian versions. For simplicity we will look at the Gaussian models.
Multiple Access Channel (MAC)
Gaussian Broadcast Channel
Superposition coding (1- ๏ก )P N 2 ๏ก P 1
Superposition coding (1- ๏ก )P N 2 ๏ก P 1
Standard Gaussian Interference Channel Power P1 ^ W 1 W 1 a b ^ W 2 W 2 Power P2
Symmetric Gaussian Interference Channel Power P Power P
Z-Gaussian Interference Channel
Interference Channel: Strategies Things that we can do with interference: Ignore (take interference as noise (IAN) 1. Avoid (divide the signal space (TDM/FDM)) 2. Partially decode both interfering signals 3. Partially decode one, fully decode the other 4. Fully decode both (only good for strong inter- 5. ference , aโฅ1)
Interference Channel: Brief history ๏จ Carleial (1975): Very strong interference does not reduce capacity (a 2 โฅ 1+P) ๏จ Sato (1981), Han and kobayashi (1981): Strong interference (a 2 โฅ 1) : IFC behaves like 2 MACs ๏จ Motahari, Khandani (2007), Shang, Kramer and Chen (2007), Annapureddy, Veeravalli (2007): Very weak interference (2a(1+a 2 P) โค 1 ) : Treat interference as noise โ (IAN)
Interference Ch.: History (continued) ๏จ Sason (2004): Symmetrical superposition to beat TDM ๏จ Etkin, Tse, Wang (2008): capacity to within 1 bit ๏จ C (2011): Noisebergs to get Gaussian H+K for Z IFCs ๏จ C, Nair (2012, 2013, 2016, 2017): Some progress on achievable region of symmetric Gaussian IFCs ๏จ Polyanskiy and Wu, 2016: Corner points established.
Recommend
More recommend