Implementation of Round Colliding Beams Concept at VEPP-2000 Dmitry Shwartz BINP, Novosibirsk Oct 28, 2016 JAI, Oxford
Introduction Beam-Beam Effects 2
Circular colliders e e Different schemes: Single ring / two rings Multibunch beams Number of IPs Interaction Points (IP) Head-on / crossing angle Low-beta insertion (Interaction Region − IR) 3
Colliders in operation: 1 × 10 34 cm -2 s -1 , 1 × 10 27 cm -2 s -1 LHC pp, PbPb 7 TeV, 2.8 TeV/n 1 × 10 32 cm -2 s -1 , 1.5 × 10 27 cm -2 s -1 RHIC pp, AuAu 250 GeV,100 GeV/n e + ,e 4 × 10 32 cm -2 s -1 DAFNE 0.5 GeV e + ,e 7 × 10 32 cm -2 s -1 BEPC-II 1.89 GeV e + ,e 2 × 10 31 cm -2 s -1 VEPP-4M 5.5 GeV e + ,e 1 × 10 32 cm -2 s -1 VEPP-2000 1 GeV under construction: e + ,e 4 × 7 TeV 8 × 10 35 cm -2 s -1 SuperKEKB 1 × 10 27 cm -2 s -1 NICA AuAu 4.5 GeV/n stopped: AdA (1961) – first collider (e + ,e ) ISR (1971) – first hadron collider (pp) SLC (1988) – first (and only) linear collider + 19 others LEP (1988) – highest energy e + ,e collider (104.6 GeV) HERA (1992) – first (and only) electron-ion collider KEKB (1999) – highest luminosity collider (2.1 × 10 34 cm -2 s -1 ) 4
Luminosity L N Number of events per second: process L 2 n f c ( , , x z s ct ) ( , , x z s ct dxdzdsdt ) b 0 1 2 x z s t , , , 2 y 1 2 For Gaussian distributions, 2 ( ) y e y non-equal beam profiles: 2 y , , y x z s N N n f 1 2 b 0 L 2 2 2 2 2 1 x 2 x 1 z 2 z How many interacts? 32 2 1 24 2 L 10 cm s 10 cm process ~ ~ 10 6 f 12 10 Hz 0 11 N ~10 Compare to bunch Other particles do not interact with each other but with opposite bunch field 5
Linear beam-beam effects Linear focusing Beam-beam force for Gaussian bunches Perturbation: thin axisymmetric linear lens. cos sin sin 1 0 0 0 0 0 0 M sin cos sin p 1 0 0 0 0 0 The sign depends on particles type. cos sin p sin sin Focusing for 0 0 0 0 0 0 0 particle-antiparticle sin p cos p sin cos sin 0 0 0 0 0 0 0 0 6 beams.
Linear beam-beam effects (2) 1 1 1 Tr( ) cos cos sin M p 0 0 0 2 2 cos cos sin 0 0 p / 2 0 N r * * p , 2 e x z Beam-beam parameter x z , 2 ( ) 4 x z , x z 1 arccos(cos 2 sin ) cos cos 2 sin 0 0 0 0 0 2 = 0.3 = 0.2 = 0.1 = 0.05 =0.025 =0.075 =0.15 =0.25 7
Dynamic beta cos cos 2 sin sin sin 0 0 0 0 sin sin 0 0 0 0 2 2 2 2 1 (cos 2 sin ) sin 4 cos sin (2 ) sin 0 0 0 0 0 0 0 2 (1960s) 1 4 cot (2 ) 0 One of the reasons to choose = 0.3 = 0.2 working point close to half- = 0.1 integer resonance: additional = 0.05 (dynamic) bonus final focusing 8
Dynamic emittance (1990s) In electron synchrotron radiative beam emittance: BetaX 5 BetaY WS 3 H r / 55 BetaX 0 2 e BetaY RING Beta - function, cm x 4 2 J 32 3 1/ r X 0 3 2 2 H s ( ) ( ) ( ) s D s 2 ( ) ( ) s D s D s '( ) ( ) s D s '( ) x x x 2 Perturbed -function (dynamic beta) 1 0 10 20 30 40 50 propagates to arcs and modifies H(s). Current, mA e1 -5 1,2x10 e2 WS as 0,09 e1 bs WS -5 1,0x10 0,08 e2 RING a b RING 0,07 VEPP-2000 -6 8,0x10 Emittance 0,06 Size, mm examples 0,05 -6 6,0x10 0,04 0,03 -6 4,0x10 0,02 0,01 -6 2,0x10 0,00 0 10 20 30 40 50 0,0 Current, mA 0 10 20 30 40 50 9 Current, mA
Dynamic beta & emittance 44 44 mA 2 Beam profile monitors at VEPP-2000 2 2 mA 2 10
Flip-flop (simple linear example) Assume round beams, unperturbed emittance 2 2 * * Nr Nr e 0 e 0 0 0 cos cos 2 sin 2 0 2 2 1 0 2 0 4 4 2 0 2 2 sin sin 1 1 0 0 2 2 2 0 0 0 0 b 1 4 cot 2 1,2 0 0 0 1,2 1 2 2 = 0.1 2 2 2 b 1 4 cot b 2 b 0 0 2 0 2 1 2 2 2 b 1 4 cot b 2 b 0 0 1 0 1 2 Self-consistent solutions: equal sizes below threshold , non-equal above th . 11
Coherent beam-beam Two beams modes coupling via beam-beam interaction: new eigenmodes. -mode, unperturbed tune, = 0 IP -mode, shifted tune, = 0 + 0 = 0 + IP Without going into details, ~1 K.Hirata, 1988 VEPP-2000 -modes -modes example 12
Coherent beam-beam Example: coherent beam-beam modes monitoring at VEPP-2000. -modes -modes Shifted tune drift with beam current decay. 13
Beam-beam tune spread LHC example: pp − defocusing Linear beam-beam: tune shift Nonlinear beam-beam: tune spread (footprint) 14
Beam-beam limit * r N Beam-beam parameter saturation , e x z , 2 x z , emittance (and beam size) growth 2 ( ) x z , x z Final limit: 1) emittance blowup, 2) lifetime reduction, 3) flip-flop effect J.Seeman (1983) 15
Nonlinear beam-beam limit * * N r r N 2 e z e z 2 z 2 ( ) 2 z x z x z Typical dependence of specific N n f N luminosity on beam current 1 b 0 2 L 4 x z (VEPP-2M example) n f N L 1 b 0 2 L spec N N N 4 1 2 1 x z 16
Distribution deformation LIFETRAC simulations example DAFNE example: beam profile measurements. Vertical profile significantly differs z = 398 m from Gaussian distribution. “Long” tails – lifetime reduction (+ hard background in detectors). 17
Nonlinear beam-beam 6 th order betatron resonances & synchro-betatron satellites BB-interaction produces: 1) High-order resonance grid 2) Footprint, overlapping resonances FMA: footprint Resonances in normalized amplitudes plain 18 VEPP-4 simulations example (flat e + ,e beams)
Integrable beam-beam? What can be done to increase significantly beam-beam parameter threshold? Integrability should be implemented! Half-integrability: 1) Round beams (+1 integral of motion >> 1D nonlinearity remains) 2) Crab-waist approach for large Piwinsky angle 3) Vicinity to half-integer resonance. Even closer to full-integrable beam-beam? 1) Round beams + special longitudinal profile? …? 2) Reduction of nonlinear motion dimensions number is very important: diffusion along stochastic layer through additional dimension is suppressed 19
Round beams at e + e - collider Luminosity increase scenario: Number of bunches (i.e. collision frequency) Bunch-by-bunch luminosity Round Beams: 2 2 2 2 f 4 f x y x y L 1 L 2 * r 2 r e y x e 2 1 / 4 Geometric factor: y x Beam-beam limit enhancement: 0.1 IBS for low energy? Better life time! 02/19
The concept of Round Colliding Beams Axial symmetry of counter beam force together with x-y symmetry of transfer matrix should provide additional integral of motion (angular momentum M z = x y - xy ). Particle dynamics remains nonlinear, but becomes 1D. Lattice requirements: • Head-on collisions! • Small and equal β -functions at IP: x y Round beam • Equal beam emittances: x y M x = M y • Equal fractional parts of betatron tunes: x y V.V.Danilov et al., EPAC’96, Barcelona, p.1149, (1996) 03/19
Historic beam-beam simulations “Weak - Strong” “Strong - Strong” I.Nesterenko, D.Shatilov, E.Simonov, in Beam size and luminosity vs. the Proc. of Mini- Workshop on “Round nominal beam-beam parameter beams and related concepts in beam (A. Valishev, E. Perevedentsev, dynamics”, Fermilab, December 5 -6, K. Ohmi, PAC’2003 ) 1996. 04/19
Recommend
More recommend