imaging and controlling emergent states
play

Imaging and Controlling Emergent States in Quantum Materials Peter - PowerPoint PPT Presentation

Imaging and Controlling Emergent States in Quantum Materials Peter Wahl University of St Andrews Acknowledgements Experiments: Christopher Trainer, Chi Ming Yim, Ram Aluru, Haibiao Zhou, Antoine Essig, Jean-Philippe Reid (St Andrews) Mostafa


  1. Imaging and Controlling Emergent States in Quantum Materials Peter Wahl University of St Andrews

  2. Acknowledgements Experiments: Christopher Trainer, Chi Ming Yim, Ram Aluru, Haibiao Zhou, Antoine Essig, Jean-Philippe Reid (St Andrews) Mostafa Enayat, Zhi-Xiang Sun, Udai Raj Singh, Stefan Schmaus (Stuttgart) Samples: Y. Liu, C.T. Lin, MPI Stuttgart V. Tsurkan, J. Deisenhofer, A. Loidl, Universität Augsburg Shun Chi, Doug Bonn, UBC Vancouver Funding: Chris Stock, University of Edinburgh Scottish Universities Physics Alliance Netherlands Organization for Scientific Research Theory: (Rubicon Grant) A. Yaresko, MPI Stuttgart EPSRC C. Heil and F . Giustino, Oxford University

  3. Quantum Materials - High Tc Superconductivity May 11, 1987 K.A. Müller and J.G. Bednorz, Science 237 , 1133 (1987)

  4. Phase Diagrams of Quantum Materials C. Lester et al. , Nat. Mat. 14 , 373 (2015) S. Grigera et al. , Science 294 , 329 (2001) Nat. Phys. 8 , 514

  5. Instrumentation Magnet dewar • 1.6K (to ~20K) 16T SI STM • 7mK(MXC), 14T SI-STM, hold time up to ~140h • 1.6K, 9/5T vector magnet All with sample exchange and in-situ sample cleavage. STM head Rev. Sci. Instr. 82 , 113708 (2011); Rev. Sci. Instr. 84 , 013708 (2013); Rev. Sci. Instrum. 88 , 093705 (2017)

  6. Spectroscopic Mapping Spatial map of Periodic effects: local excitations: Quasiparticles Local gap size • • CDWs Effect of defects • • FFT Lattice distortions Inelastic excitations • • Local ordering •

  7. Spin-polarized STM With a magnetic tip on a magnetic sample:        E              Τ I ( V ) ( E ) ( E eV ) ( E ) ( E eV ) ( E , V , z ) f ( E eV , T ) f ( E , T ) d s t s t t s   Tip LDOS Sample LDOS R. Wiesendanger, Rev. Mod. Phys. 81, 1495

  8. Spin-polarized STM With a magnetic tip on a magnetic sample:        E              Τ I ( V ) ( E ) ( E eV ) ( E ) ( E eV ) ( E , V , z ) f ( E eV , T ) f ( E , T ) d s t s t t s   Tip LDOS Sample LDOS In constant current mode: tip will approach R. Wiesendanger, Rev. Mod. Phys. 81, 1495

  9. What is the Smoking Gun of Magnetic Imaging with STM ? 1. Change the magnetization of the tip 2. image the same place with the same tip

  10. Iron-based Superconductors Paglione&Greene, Nat. Phys. 6 , 645 (2010)

  11. Phase Diagram 100 tetragonal Temperature [K] 80 60 40 monoclinic orthorhombic 20 superconductivity 0 0.0 0.2 0.4 0.6 0.8 1.0 x [Fe 1+y Se x Te 1-x ] N. Katayama et al. , J. Phys. Soc. Jpn. 79 , 113702 (2010); Y. Mizuguchi and Y. Takano, J. Phys. Soc. Jpn. 79 , 102001 (2010)

  12. Phase Diagram Plaquette Order Diagonal Double Stripe Order Origin of complex magnetic order: Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123) • Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206) • Structural distortion driving double-stripe order (Glasbrenner et al., Nat. Phys. 11, 954) • E.E. Rodriguez et al. , Phys. Rev. B84, 064403 (2011)

  13. Fe 1+ δ Te Fe Te Cleavage 3.77Å plane

  14. Stripes in FeTe 1 b q Fe q Te Fe a q Te Te y q 0 b a -1 -1 0 1 q x 1 b q Fe q Te Fe a q Te Te 0 q y q AFM b a -1 Magnetic structure deduced -1 0 1 q x from Neutron Scattering Expected Pattern in Fourier Space

  15. Stripes in FeTe Non-magnetic tip Magnetic tip Some Fe defects gone …

  16. Magnetic Field 30 B=5T Height (pm) B=-5T 0

  17. Magnetic Field 10 z t Spin pol. (%) P -10 Largest spin polarization between Te atoms ! Science 345 , 653 (2014) Phys. Rev. B 91 , 161111 (2015)

  18. STM in a Vectormagnet Full 3D rotation of 5T Rev. Sci. Instr. 88, 093705 (2017)

  19. Results: Low excess Fe – Fe 1.06 Te X 1.8nm C.Trainer et al. arxiv/1802.05978 Y Z

  20. Reconstructing the magnetic structure Out of plane angle (degrees) out of plane component of 31 ° • Same periodicity, but different • magnetization direction than neutron scattering see also Hänke et al , Nat. Commun. 8, 13939

  21. Magnetic order at high excess Fe concentations x >0.12 Incommensurate order with q =0.4.

  22. Magnetic order at high excess Fe concentations x >0.12 Spin spiral! spin spiral rotating in the • bc plane full agreement with • neutron scattering

  23. Effect of removing surface Fe Fe 1+ d/2 Te Fe 1+ d Te

  24. Phase Diagram Plaquette Order Diagonal Double Stripe Order Origin of complex magnetic order: Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123) • Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206) • Structural distortion driving double-stripe order (Glasbrenner et al., Nat. Phys. 11, 954) • E.E. Rodriguez et al. , Phys. Rev. B84, 064403 (2011)

  25. Magnetic structure of Fe 1.1 Te/Fe 1.2 Te q a q b

  26. Relationship with field angle q a q b

  27. Resulting structure Spins order in a complex staggered structure forming two different spin spirals along both Fe-Fe directions.

  28. Construcing a magnetic phase diagram q a q b

  29. Magnetic Phase Diagram q a x =0.06 q b x =0.12 x =0.20

  30. Phase Diagram Origin of complex magnetic order: Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123) • Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206) • Structural distortion driving double-q order (Glasbrenner et al., Nat. Phys. 11, 954) • E.E. Rodriguez et al. , Phys. Rev. B84, 064403 (2011)

  31. Phase Diagram 100 0 % tetragonal 80 Tempe r a t u r e [ K ] Selenium 60 10 % 40 monoclinic orthorhombic 20 superconductivity 0 0.0 0.2 0.4 0.6 0.8 1.0 15 % x [Fe 1+y Se x Te 1-x ] N. Katayama et al. , J. Phys. Soc. Jpn. 79 , 113702 (2010); Y. Mizuguchi and Y. Takano, J. Phys. Soc. Jpn. 79 , 102001 (2010) see Aluru et al., arxiv/1711.10389

  32. Controlling Symmetry Breaking Electronic States

  33. Symmetry Breaking Electronic States in Iron Pnictides Ca(Fe 0.97 Co 0.03 ) 2 As 2 T.-M. Chuang et al. , Science 327 , 181 (2010)

  34. Symmetry breaking QPI 100 tetragonal Temperature [K] 80 60 40 monoclinic orthorhombic 20 superconductivity 0 0.0 0.2 0.4 0.6 0.8 1.0 x [Fe 1+y Se x Te 1-x ] Sci. Adv. 1 , e1500206 (2015)

  35. Strain-tuning in quantum materials Susceptibility Divergent nematic response in BaFe2As2 Chu JH et al. , Science , 337 , 710 (2012) Strain-induced enhancement of Superconductivity Steppke A et al. , Science , 355 , eaaf9398 (2017)

  36. STM Strain-device Voltage leads piezo-electric actuator brass body • Strain due to anisotropic thermal contraction (300 - > 4 K) ~ ≤0.3 % • Strain levels achieved by voltage tuning were ≤0.01 % Rev. Sci. Instr. 88, 093705 (2017)

  37. STM Strain-device Voltage leads strain piezo-electric actuator brass body [010] • Strain due to anisotropic thermal [100] contraction (300 - > 4 K) ~ ≤0.3 % • Strain levels achieved by voltage FOV displacement demonstrates strain tuning LiFeAs tuning were ≤0.01 %

  38. Structure of LiFeAs

  39. Strain along [100] black dashed - unstrained ( ± 5.8 mV) red-dashed - V = -300 V

  40. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  41. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  42. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  43. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  44. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  45. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  46. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  47. Modulated Phase in strained LiFeAs 1nm strain [010] [010] 5nm 5nm [100] [100] Unstrained LiFeAs Modulated phase (periodicity ~2.7 nm) 15 mV, 0.25 nA Inset: -50 mV, 0.3nA 15 mV, 50pA

  48. Origin of the modulation 2 16.1 K 12.6 K Normalized dI/dV 7.8 K 1 2 K 0 -10 -5 0 5 10 Bias (mV) Setpoints: 20 mV, 50 pA Superconductivity forms on top of modulated state

  49. Modulated superconductivity On stripes Off stripes 1.0 Unstrained Normalized dI/dV 20 g (a.u.) 10 0.5 Bias (mV) 0.4 0 0.2 -10 0.0 -20 0.0 -20 -10 0 10 20 0 40 80 120 Bias (mV) Distance (Å)

  50. Modulated superconductivity -6 +10 mV 20x10 -16 mV 2 (l(x,V)) 10 20 g (a.u.) σ 10 Bias (mV) 0.4 0 0 0.2 -10 0.15 q/q 0 0.0 -20 0.14 0 40 80 120 Distance (Å) -20 -10 0 10 20 Bias (mV)

  51. Modulated superconductivity positive bias [010] 20 g (a.u.) [100] 10 Bias (mV) 0.4 0 0.2 -10 0.0 -20 0 40 80 120 negative bias Distance (Å)

  52. Vortex cores in modulated phase Vortex (Stripe) B=9T Vortex (Unstrained) 0 T (Unstrained) Normalized dI/dV 0.6 mV 1 -0.6 mV strain strained 0 -10 0 10 Bias (mV) unstrained

Recommend


More recommend