iii shortest nontrivial cycles
play

III. Shortest nontrivial cycles Jeff Erickson University of - PowerPoint PPT Presentation

One-Dimensional Computational Topology III. Shortest nontrivial cycles Jeff Erickson University of Illinois, Urbana-Champaign Todays Question Given a surface , find the shortest topologically nontrivial cycle in . Trivial cycles


  1. <latexit sha1_base64="CSU17sK5hVKBtUG+72EapBR4Q/E=">ACL3icbVC7SgNBFL3rM8ZX1FKExSBYSNy1iYVFwMZSxWgWeLs5GYd3JlZ2aFMGzlR/gNlurHiI3Y+g027sYURj0wcDgPuHPCJGbaeN6rMzE5NT0zW5orzy8sLi1XVlbPtUwVxSaVsVStkGiMmcCmYSbGVqKQ8DGi/D6sPAvblFpJsWZGSQYcBIJ1meUmFzqVjY6fUWo9TNbz9yOvlHGit0op7GM3KhbqXo1bwj3L/FHpNqo3p9eAsBxt/LZ6UmachSGxkTrtu8lJrBEGUZjzMqdVGNC6DWJsJ1TQTjqwA6/kblbudJz+1LlTxh3qP5sWMK1HvAwT3JirvRvrxD/89qp6e8HlokNSjo+BX0Kj8OVWCLWg81i8RYwIaoiCZC7xSESyHbc6oksWyWTlfy/+9zV9yvlfzvZp/4lcbB/CNEqzDJmyD3VowBEcQxMo3MEDPMGz8+i8OG/O+3d0whl1mAMzscXc52sxw=</latexit> <latexit sha1_base64="jFB82KNZDA29C2tDnajWv3WMZH0=">ACL3icbVDLSsNAFJ3UV62vqksRgkFwITVxowsXBTcuq1gtKFOprfp0MxMnJkIMmTlR/gNulM/RtyIW7/BjUl1YVoPDBzOA+6cI6o0q7ZpWmpmdm58rzlYXFpeWV6urahRKJNAkIhKyFWAFEeXQ1FRH0IolYBZEcBkMj3P/8gakoKf69sYfIZDTvuUYJ1J3epmpy8xMV5qDlK7o6lNnwvzGgkQjvsVh235o5gTxLvlzh15/7s/OoRGt3qV6cnSMKAaxJhpdqeG2vfYKkpiSCtdBIFMSZDHEI7oxwzUL4ZfSO1tzOlZ/eFzB7X9kj92zCYKXLgizJsB6ocS8X/Paie4f+obyONHASfEKMsiOA+mbvNYDRUNeCJgAJFaYq92cMF0WaUSJEvm1aytbzxbSbJxX7Nc2veqefUj9APymgDbaEd5KEDVEcnqIGaiKA79ICe0Yv1ZL1a79bHT7Rk/XbWUQHW5zeGu64q</latexit> <latexit sha1_base64="jFB82KNZDA29C2tDnajWv3WMZH0=">ACL3icbVDLSsNAFJ3UV62vqksRgkFwITVxowsXBTcuq1gtKFOprfp0MxMnJkIMmTlR/gNulM/RtyIW7/BjUl1YVoPDBzOA+6cI6o0q7ZpWmpmdm58rzlYXFpeWV6urahRKJNAkIhKyFWAFEeXQ1FRH0IolYBZEcBkMj3P/8gakoKf69sYfIZDTvuUYJ1J3epmpy8xMV5qDlK7o6lNnwvzGgkQjvsVh235o5gTxLvlzh15/7s/OoRGt3qV6cnSMKAaxJhpdqeG2vfYKkpiSCtdBIFMSZDHEI7oxwzUL4ZfSO1tzOlZ/eFzB7X9kj92zCYKXLgizJsB6ocS8X/Paie4f+obyONHASfEKMsiOA+mbvNYDRUNeCJgAJFaYq92cMF0WaUSJEvm1aytbzxbSbJxX7Nc2veqefUj9APymgDbaEd5KEDVEcnqIGaiKA79ICe0Yv1ZL1a79bHT7Rk/XbWUQHW5zeGu64q</latexit> <latexit sha1_base64="LCGnCy6h6BPEOgfmh7c4Zvdsyzc=">ACL3icbVDLSsNAFJ34rPVdSlCsAgupCZu6sJFwY3LCvYBTSiT6U06NDMTZyZCGbLya1yqHyNuxK3f4MakdmFbDwczgPunCJqdKO824tLa+srq2XNsqbW9s7u5W9/bYSqSTQIiIWshtgBTHl0NJUx9BNJGAWxNAJRteF3kAqajgd3qcgM9wxGlICda51K8ceaHExLiZqWe2p+6lNvw8ymksIjvqV6pOzZnAXiTulFTRFM1+5dsbCJIy4JrEWKme6yTaN1hqSmLIyl6qIMFkhCPo5ZRjBso3k29k9kmuDOxQyPxbU/Uvw2DmVJjFuRJhvVQzXuF+J/XS3V46RvKk1QDJ7NXkGF+HEjfFLUBKBrxmYAJQGKFuTorCBNczNqMEimKZbNyvpY7v80iaV/UXKfm3rVxtV0txI6RMfoFLmojhroBjVRCxH0iJ7QC3q1nq0368P6/I0uWdPOAZqB9fUD7NurGw=</latexit> <latexit sha1_base64="AbPyZtYZ6MPtmpJwlvfdAcVjA=">ACL3icbVC7SgNBFL3r2/iKWoqwGEQLibtaBmxsVQwJpAsYXZysw7uzKwzs4IMW/k1luoPWPsDYiO2foONuzGFMR4YOJwH3DlhEjNtPO/NGRufmJyanpktzc0vLC6Vl1cutEwVxTqVsVTNkGiMmcC6YSbGZqKQ8DGRnh1XPiNG1SaSXFubhMOIkE6zFKTC51yuvtniLU+pndz9y2vlbGHu1GOY1l5EadcsWren24o8QfkEpt62X8GQBO+WvdlfSlKMwNCZat3wvMYElyjAaY1ZqpxoTQq9IhK2cCsJRB7b/jczdzJWu25Mqf8K4fV3wxKu9S0P8yQn5lL/9QrxP6+Vmt5hYJlIUoOCDl9BL/PjUAW2qHVRs0gMBWyIimgi9E5BuBRy2OaMKlksm5Xytfy/24ySi72q71X9M79SO4IfzMAabMA2+HANTiBU6gDhTu4h0d4ch6cV+fd+fiJjmDzioMwfn8Bo1erOM=</latexit> <latexit sha1_base64="OeE7kcGI4zqtuDZypWMQGRnqbB0=">ACL3icbVC7SgNBFJ1NfMbXqUIi0G0kLirhZYRG8sIJhGSJcxObtbBnZl1ZlYIw1Z+hY29nY9fsPIHxEZs/QYbdxMLox4YOJwH3DlBHFGlXfVKhTHxicmp6ZLM7Nz8wv24lJDiUQSqBMRCXkaYAUR5VDXVEdwGkvALIigGZwf5n7zEqSigp/ofgw+wyGnPUqwzqSOvdruSUyMl5rd1GmrC6nNwXaY0UiETtixy27FHcD5S7xvUq5uPBef7m6uax37s90VJGHANYmwUi3PjbVvsNSURJCW2omCGJNzHEIroxwzUL4ZfCN1jOl6/SEzB7XzkD92TCYKdVnQZkWJ+p314u/ue1Et3b9w3lcaKBk9EryFl2HEjf5LUuKBrykYAJQGKFudrKCRNcjNqMEinyZdNStpb3e5u/pLFT8dyKd+yVqwdoiCm0gtbQJvLQHqiI1RDdUTQFbpFD+jRurderDfrfRgtWN+dZTQC6+MLbD+uzg=</latexit> <latexit sha1_base64="OeE7kcGI4zqtuDZypWMQGRnqbB0=">ACL3icbVC7SgNBFJ1NfMbXqUIi0G0kLirhZYRG8sIJhGSJcxObtbBnZl1ZlYIw1Z+hY29nY9fsPIHxEZs/QYbdxMLox4YOJwH3DlBHFGlXfVKhTHxicmp6ZLM7Nz8wv24lJDiUQSqBMRCXkaYAUR5VDXVEdwGkvALIigGZwf5n7zEqSigp/ofgw+wyGnPUqwzqSOvdruSUyMl5rd1GmrC6nNwXaY0UiETtixy27FHcD5S7xvUq5uPBef7m6uax37s90VJGHANYmwUi3PjbVvsNSURJCW2omCGJNzHEIroxwzUL4ZfCN1jOl6/SEzB7XzkD92TCYKdVnQZkWJ+p314u/ue1Et3b9w3lcaKBk9EryFl2HEjf5LUuKBrykYAJQGKFudrKCRNcjNqMEinyZdNStpb3e5u/pLFT8dyKd+yVqwdoiCm0gtbQJvLQHqiI1RDdUTQFbpFD+jRurderDfrfRgtWN+dZTQC6+MLbD+uzg=</latexit> <latexit sha1_base64="SNF1nzulHz+AjFsEbKJw1tI5u/o=">ACL3icbVDLSsNAFJ3UV62vqEsRgkVwITXRhS5b3LisYB/QhjKZ3qZDMzNxZiKUISu/xqX6MeJG3PoNbkxqF7b1wMDhPODOCeKIKu2671ZhaXlda24XtrY3NresXf3mkokCDiEjIdoAVRJRDQ1MdQTuWgFkQSsYXed+6wGkoLf6XEMPsMhpwNKsM6kn3YHUhMjJeai9TpqnupTe0szGgkQifs2W34k7gLBJvSspoinrP/u72BUkYcE0irFTHc2PtGyw1JRGkpW6iIMZkhEPoZJRjBso3k2+kznGm9J2BkNnj2pmofxsGM6XGLMiSDOuhmvdy8T+vk+jBlW8ojxMNnMxeQYbZcSB9k9f6oGjIZwImAIkV5uo0J0xwMWszSqTIl01L2Vre/DaLpHle8dyKd+uVq7XpbkV0gI7QCfLQJaqiG1RHDUTQI3pCL+jVerberA/r8zdasKadfTQD6+sHmjGq7w=</latexit> <latexit sha1_base64="BT8G3eDcaFLm8SkxGcsa7Zckc0=">ACJXicbVBNS8NAFHypX7V+RT16iRbBg9SkFz14KIjgUcGq0ISy2b7GpdnduLsRSuhv8aj+G8ieNL/4cWk9mCsAw+GmXkwTJjETBvXfbcqM7Nz8wvVxdrS8srqmr2+caVlqi2qYylugmJxpgJbBtmYrxJFBIexngdDk4K/oelWZSXJphgEnkWB9RonJpa692XR8fadMJg6ikePHMnKirl13G+4YzjTxJqTe2vZPwHgvGt/+T1JU47C0Jho3fHcxAQZUYbRGEc1P9WYEDogEXZyKghHWTj8iNnN1d6Tl+q/IRxurvj4xwrYc8zJOcmFv91yvE/7xOavpHQcZEkhoUtNyC3ublUAVZ8dZDzSJRCmQhKqKJ0PsF4VLIs0ZVbLYc1TL1/L+bjNrpoNz214F169dQw/qMIW7MAeHAILTiDc2gDhSE8wBM8W4/Wi/Vqvf1EK9bkZxNKsD6+AQhwqHs=</latexit> <latexit sha1_base64="MgxXgBSQUWJvFvPt8TX5aC34Bsc=">ACJXicbVDNSsNAGNz4W+tftDe9RIvgQWrSix48FEQTxXsDzShbLZf06XZ3bi7EUros3hUH8abFDz5BD6BF5O2B9s68MEwMx8M40chVdq2P42l5ZXVtfXcRn5za3tn19zbrysRSwI1IkIhmz5WEFIONU1CM1IAmZ+CA2/f535jSeQigr+oAcReAwHnHYpwTqV2mahbLnqUeqEnwdDyw1FYAVts2iX7DGsReJMSbFy5N583x2Mqm3zx+0IEjPgmoRYqZjR9pLsNSUhDMu7GCJM+DqCVUo4ZKC8Zlx9aJ6nSsbpCpse1NVb/fiSYKTVgfpkWPfUvJeJ/3mtWHcvYTyKNbAyWwL0kvLgfS7K0DigZ8JpD4ILHCXJ1lhAkuZm1GiRTZnsN8upYzv80iqZdLjl1y7p1i5QpNkEOH6BidIgdoAq6RVUQwQN0DN6RW/Gi/FufBijSXTJmP4U0AyMr1/xRqnC</latexit> <latexit sha1_base64="MgxXgBSQUWJvFvPt8TX5aC34Bsc=">ACJXicbVDNSsNAGNz4W+tftDe9RIvgQWrSix48FEQTxXsDzShbLZf06XZ3bi7EUros3hUH8abFDz5BD6BF5O2B9s68MEwMx8M40chVdq2P42l5ZXVtfXcRn5za3tn19zbrysRSwI1IkIhmz5WEFIONU1CM1IAmZ+CA2/f535jSeQigr+oAcReAwHnHYpwTqV2mahbLnqUeqEnwdDyw1FYAVts2iX7DGsReJMSbFy5N583x2Mqm3zx+0IEjPgmoRYqZjR9pLsNSUhDMu7GCJM+DqCVUo4ZKC8Zlx9aJ6nSsbpCpse1NVb/fiSYKTVgfpkWPfUvJeJ/3mtWHcvYTyKNbAyWwL0kvLgfS7K0DigZ8JpD4ILHCXJ1lhAkuZm1GiRTZnsN8upYzv80iqZdLjl1y7p1i5QpNkEOH6BidIgdoAq6RVUQwQN0DN6RW/Gi/FufBijSXTJmP4U0AyMr1/xRqnC</latexit> <latexit sha1_base64="CKXJjy1jCMFW2XkaJCjNmkoMZRI=">ACJXicbVBLS8NAGNzUV62vaI9egkXwIDXpRQ8eCl48VrAPaELZbL+mS7O7cXcjlJDf4lH9Md5E8OQP8WJSczCtAx8M/PBMH4UqVt+9OorK1vbG5Vt2s7u3v7B+bhU+JWBLoEhEKOfCxgpBy6GqQxhEjDzQ+j7s5vc7z+CVFTwez2PwGM4HRCdaZNDLrLctVD1In/CJILTcUgRWMzIbdtBewVolTkAYq0BmZ3+5YkJgB1yTESg0dO9JegqWmJIS05sYKIkxmOIBhRjlmoLxkUT61TjNlbE2EzI5ra6H+/UgwU2rO/CzJsJ6qZS8X/OGsZ5ceQnlUayBk3ILMs3KgfS/G0Miga8FEh8kFhrs5zwgQXZtRIkW+Z1rL1nKWt1klvVbTsZvOndNoXxe7VdExOkFnyEGXqI1uUQd1EUFz9IRe0KvxbLwZ78bHb7RiFD91VILx9QMxAaZ</latexit> <latexit sha1_base64="cdwEMKOdRwA6XQvkPIt0ztq/5w4=">ACL3icbVC7SgNBFL3r2/iKWoqwGEQLibux0DJiY6lgVEiWMDu52QzZmVlnZoUwbOXWKo/YO0PiI3Y+g027kYLox4YOJwH3DlhEjNtPO/FGRufmJyanpktzc0vLC6Vl1fOtUwVxQaVsVSXIdEYM4ENw0yMl4lCwsMYL8L+UeFfXKPSTIozM0gw4CQSrMsoMbnULq+3uopQW8vsXua29JUy9nA3ymksIzdqlyte1RvC/Uv8b1Kpbz2NPwLASbv80epImnIUhsZE6bvJSawRBlGY8xKrVRjQmifRNjMqSAcdWCH38jczVzpuF2p8ieMO1R/NizhWg94mCc5MT392yvE/7xmaroHgWUiSQ0KOnoF7eXHoQpsUeugZpEYCdgQFdFE6J2CcCnkqM0ZVbJYNivla/m/t/lLzmtV36v6p36lfghfmIE12IBt8GEf6nAMJ9ACjdwC/fw4Nw5z86r8/YVHXO+O6swAuf9E48hrOQ=</latexit> <latexit sha1_base64="Mr4xuOkv9kUACyjWjG0bc/R8jKc=">ACL3icbVC7SgNBFJ31GeNr1VKExSBaSNyNhZYRG8sIJgrJEmYnN+vgzsw6MyuEYSu/wsbezscvWPkDYiO2foONuzGFiR4YOJwH3DlBHFGlXfNGhufmJyaLswUZ+fmFxbtpeWGEokUCciEvIswAoiyqGuqY7gLJaAWRDBaXBxmPunVyAVFfxE92LwGQ457VKCdSa17bVWV2JiKqnZTZ2WupTaHOyEGY1E6IRtu+SW3T6cv8QbkFJ182X8+f72pta2v1odQRIGXJMIK9X03Fj7BktNSQRpsZUoiDG5wCE0M8oxA+Wb/jdSZyNTOk5XyOx7fTV3w2DmVI9FmRJhvW5GvVy8T+vmejuvm8ojxMNnAxfQc6z40D6Jq91QNGQDwVMABIrzNV2TpjgYthmlEiRL5sWs7W80W3+kal7Ll79grVQ/QDwpoFa2jLeShPVRFR6iG6oiga3SHtGT9WC9Wu/Wx090zBp0VtAQrM9vbgKuzw=</latexit> <latexit sha1_base64="Mr4xuOkv9kUACyjWjG0bc/R8jKc=">ACL3icbVC7SgNBFJ31GeNr1VKExSBaSNyNhZYRG8sIJgrJEmYnN+vgzsw6MyuEYSu/wsbezscvWPkDYiO2foONuzGFiR4YOJwH3DlBHFGlXfNGhufmJyaLswUZ+fmFxbtpeWGEokUCciEvIswAoiyqGuqY7gLJaAWRDBaXBxmPunVyAVFfxE92LwGQ457VKCdSa17bVWV2JiKqnZTZ2WupTaHOyEGY1E6IRtu+SW3T6cv8QbkFJ182X8+f72pta2v1odQRIGXJMIK9X03Fj7BktNSQRpsZUoiDG5wCE0M8oxA+Wb/jdSZyNTOk5XyOx7fTV3w2DmVI9FmRJhvW5GvVy8T+vmejuvm8ojxMNnAxfQc6z40D6Jq91QNGQDwVMABIrzNV2TpjgYthmlEiRL5sWs7W80W3+kal7Ll79grVQ/QDwpoFa2jLeShPVRFR6iG6oiga3SHtGT9WC9Wu/Wx090zBp0VtAQrM9vbgKuzw=</latexit> <latexit sha1_base64="rHgx1a6y2GeNKcNam8NsY+Qpzdg=">ACL3icbVDLSsNAFJ3UV62vqEsRgkVwITWpC12uHFZwT6gDWUyvU2HZmbizEQoQ1Z+jUv1Y8SNuPUb3JjULmz1wMDhPODOCeKIKu26b1ZhaXlda24XtrY3NresXf3WkokCTiEjIToAVRJRDU1MdQSeWgFkQTsYX+V+x6koLf6kMPsMhp0NKsM6kvn3YG0pMTDU156nTU3dSm/pZmNFIhE7Yt8tuxZ3C+Uu8GSmjGRp9+6s3ECRhwDWJsFJdz421b7DUlESQlnqJghiTMQ6hm1GOGSjfTL+ROseZMnCGQmaPa2eq/m4YzJSasCBLMqxHatHLxf+8bqKHl76hPE40cDJ/BRlx4H0TV4bgKIhnwuYACRWmKvTnDBxbzNKJEiXzYtZWt5i9v8Ja1qxXMr3o1XrtVnuxXRATpCJ8hDF6iGrlEDNRFBD+gRPaMX68l6td6tj59owZp19tEcrM9vm/Sq8A=</latexit> Systolic inequalities [Colin de Verdière, Hubard, de Mesmay 2013] ‣ Any Riemannian surface can be approximated (up to constant factors) by a combinatorial triangulation, and vice versa. ▹ discrete → continuous: glue equilateral triangles, smooth vertices ▹ continuous → discrete: intrinsic Voronoi diagram of ε-net 2 ‣ Every Riemannian surface has systole ≤ 
 p A / g log g 3 [Gromov 1983, 1992] ⇒ Every triangulated surface map has edgewidth ≤ 
 p n / g log g 2 Improves [Hutchinson 1988] 1 p ‣ There are Riemannian surfaces with systole ≥ 
 A / g log g 3 [Buser Sarnak 1994] 1 p ⇒ There are triangulated surface maps with edgewidth ≥ 
 n / g log g 7 Conjectured by [Przytycka Przytycki 1993]

  2. Tree-cotree structures

  3. Tree-cotree decomposition A partition of the edges into three disjoint subsets: ‣ A spanning tree T ‣ A spanning cotree C — C * is a spanning tree of G * ‣ Leftover edges L := E \ ( C ∪ T ) — Euler’s formula implies | L | = 2 g [von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

  4. Tree-cotree decomposition A partition of the edges into three disjoint subsets: ‣ A spanning tree T ‣ A spanning cotree C — C * is a spanning tree of G * ‣ Leftover edges L := E \ ( C ∪ T ) — Euler’s formula implies | L | = 2 g [von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

  5. Tree-cotree decomposition A partition of the edges into three disjoint subsets: ‣ A spanning tree T ‣ A spanning cotree C — C * is a spanning tree of G * ‣ Leftover edges L := E \ ( C ∪ T ) — Euler’s formula implies | L | = 2 g [von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

  6. Tree-cotree decomposition A partition of the edges into three disjoint subsets: ‣ A spanning tree T ‣ A spanning cotree C — C * is a spanning tree of G * ‣ Leftover edges L := E \ ( C ∪ T ) — Euler’s formula implies | L | = 2 g [von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

  7. Fundamental loops and cycles ‣ Fix a tree-cotree decomposition ( T , L , C ) and a basepoint x . ‣ Nontree edge uv defines a fundamental loop loop ( T , uv ): ▹ path from x to u + uv + path from v to x ‣ Nontree edge uv defines a fundamental cycle cycle ( T , uv ): ▹ unique cycle in T ∪ { uv } ▹ path from lca(u,v) to u + uv + path from v to lca(u,v)

  8. Tree-cotree structures ‣ System of loops { loop ( T , e ) | e ∈ L } ▹ Cutting Σ along these loops leaves a disk ▹ Basis for the fundamental group π 1 (Σ, x )

  9. Tree-cotree structures ‣ System of cycles { cycle ( T , e ) | e ∈ L } ▹ 2g simple cycles ▹ Basis for the first homology group H 1 (Σ)

  10. Tree-cotree structures ‣ Cut graph T ∪ L = Σ\ C ‣ Remove degree-1 vertices ⇒ reduced cut graph ▹ Minimal subgraph with one face ▹ Composed of at most 3 g cut paths meeting at most 2 g branch points

  11. Tree-cotree structures ‣ Often useful to build these structures in the dual map Σ *. ▹ dual system of loops ▹ dual cut graph ▹ dual system of cocycles = basis for first co homology group H 1 (Σ)

  12. Tree-cotree structures ‣ Every noncontractible cycle in Σ crosses every (dual) reduced cut graph. ‣ Every nonseparating cycle in Σ crosses at least one (co)cycle in every system of (co)cycles.

  13. Shortest nontrivial cycles, take 1

  14. Three-path condition [Thomassen 1990] ‣ Any three paths with the same endpoints define three cycles. ‣ If any two of these cycles are trivial, so is the third.

  15. Three-path condition [Thomassen 1990] ‣ The shortest nontrivial cycle consists of two shortest paths between any pair of antipodal points. ‣ Otherwise, the actual shortest path would create a shorter nontrivial cycle.

  16. Greedy tree-cotree decomposition ‣ Assume edges have lengths ℓ ( e ) ≥ 0 ‣ T = shortest-path tree in Σ with arbitrary source vertex x ▹ = BFS tree if all lengths = 1 ‣ C * = maximum spanning tree of Σ* where w ( e *) = ℓ ( loop ( T , e )) ‣ Computable in O( n log n ) time using textbook algorithms. ▹ O( n ) time if all lengths = 1 ▹ O( n ) time if g =O( n 1–ε ) [Henzinger et al. ’97] [Eppstein 2003, Erickson Whittlesey 2005]

  17. Shortest nontrivial loops ‣ Build greedy tree-cotree decomposition ( T , L , C ) based at x . ‣ Build dual cut graph X * = L * ∪ C * ‣ Reduce X * to get R * [Erickson Har-Peled 2005]

  18. Shortest nontrivial loops ‣ 3-path condition ⇒ We want loop ( T , e ) for some e ∉ T ‣ loop ( T , e ) is noncontractible iff e * ∈ R * ‣ loop ( T , e ) is nonseparating iff e * ∈ R * and R *\ e * is connected [Erickson Har-Peled 2005] [Cabello, Colin de Verdière, Lazarus 2010]

  19. Shortest nontrivial loops ‣ 3-path condition ⇒ We want loop ( T , e ) for some e ∉ T ‣ loop ( T , e ) is noncontractible iff e * ∈ R * ‣ loop ( T , e ) is nonseparating iff R *\ e * is connected [Erickson Har-Peled 2005] [Cabello, Colin de Verdière, Lazarus 2010]

  20. Shortest non-trivial cycle [Erickson Har-Peled 2005] ‣ For each basepoint: O( n log n ) time. ‣ Try all possible basepoints: O( n 2 log n ) time.

  21. Shortest non-trivial cycle [Erickson Har-Peled 2005] ‣ For each basepoint: O( n log n ) time. ‣ Try all possible basepoints: O( n 2 log n ) time. ‣ This is the fastest algorithm known. ▹ Significant improvement would also improve the best time to compute the girth of a sparse graph: O( n 2 ) = BFS at each vertex 
 [Itai Rodeh 1978] ▹ Computing the girth of a dense graph is at least as hard as all-pairs shortest paths and boolean matrix multiplication. 
 [Vassilevska Williams, Williams 2010]

  22. One-cross lemmas ‣ The shortest nontrivial cycle crosses any shortest path at most once ‣ Otherwise, we could find a shorter nontrivial cycle!

  23. One-cross lemmas [Cabello Mojar 2005] ‣ Let γ* be the shortest nonseparating cycle, and let γ be any cycle in a greedy system of cycles. ‣ Then γ* and γ cross at most once.

  24. Faster algorithm [Cabello Chambers 2007] To compute the shortest nonseparating cycle: ▹ Compute a greedy system of cycles γ 1 , γ 2 , ..., γ 2 g ▹ Find the shortest cycle that crosses each greedy cycle γ i once

  25. Algorithm [Cabello Chambers 2007] ‣ To find the shortest cycle that crosses γ i once: ▹ Cut the surface open along γ i . Resulting surface Σ ✂ γ i has two copies of γ on its boundary. ▹ Find the shortest path in Σ ✂ γ i between the clones of each vertex of γ i

  26. Multiple-Source Shortest Paths [Free Gruchy (“Slow-Mo Guys”) 2018]

  27. Multiple-Source Shortest Paths [Free Gruchy (“Slow-Mo Guys”) 2018]

  28. Multiple-Source Shortest Paths [Klein 2005] ‣ Compute shortest paths between many pairs of vertices, with one vertex of each pair on a fixed “outer” face.

  29. Multiple-Source Shortest Paths [Klein 2005] ‣ Compute shortest paths between many pairs of vertices, with one vertex of each pair on a fixed “outer” face.

  30. Multiple-Source Shortest Paths [Klein 2005] ‣ Compute shortest paths between many pairs of vertices, with one vertex of each pair on a fixed “outer” face.

  31. Multiple-Source Shortest Paths [Klein 2005] ‣ Compute shortest paths between many pairs of vertices, with one vertex of each pair on a fixed “outer” face.

  32. Multiple-Source Shortest Paths [Klein 2005] ‣ Compute shortest paths between many pairs of vertices, with one vertex of each pair on a fixed “outer” face.

  33. Naïve algorithm ‣ For each boundary vertex s , compute the shortest-path tree rooted at s in O( n log n ) time. [Dijkstra 1956] ‣ The overall algorithm runs in O( n 2 log n ) time. ‣ But in fact, we can (implicitly) compute all such distances in just O( g 2 n log n ) time.

  34. Planar MSSP [Klein 2005] ‣ Let’s start with the simplest possible setting. ‣ Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

  35. Planar MSSP [Klein 2005] ‣ Let’s start with the simplest possible setting. ‣ Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

  36. Planar MSSP [Klein 2005] ‣ Let’s start with the simplest possible setting. ‣ Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

  37. Planar MSSP [Klein 2005] ‣ Let’s start with the simplest possible setting. ‣ Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

  38. Planar MSSP [Klein 2005] ‣ Intuitively, we want the shortest-path tree rooted at every boundary vertex.

  39. Planar MSSP [Klein 2005] ‣ Intuitively, we want the shortest-path tree rooted at every boundary vertex.

  40. Planar MSSP [Klein 2005] ‣ In fact, we only need to compute the first shortest-path tree, followed by changes from each tree to the next.

  41. Planar MSSP [Klein 2005] ‣ In fact, we only need to compute the first shortest-path tree, followed by changes from each tree to the next.

  42. Planar MSSP [Klein 2005] ‣ In fact, we only need to compute the first shortest-path tree, followed by changes from each tree to the next.

  43. Planar MSSP [Klein 2005] ‣ In fact, we only need to compute the first shortest-path tree, followed by changes from each tree to the next.

  44. The disk-tree lemma ‣ Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals. ‣ Deleting any edge splits T into two subtrees R and B . ‣ At most two intervals have one end in R and the other in B .

  45. The disk-tree lemma ‣ Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals. ‣ Deleting any edge splits T into two subtrees R and B . ‣ At most two intervals have one end in R and the other in B .

  46. The disk-tree lemma ‣ Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals. ‣ Deleting any edge splits T into two subtrees R and B . ‣ At most two intervals have one end in R and the other in B .

  47. Number of pivots ‣ Each directed edge x → y pivots in at most once . ▹ Consider the tree of shortest paths ending at y . x y

  48. Number of pivots ‣ Each directed edge x → y pivots in at most once . ▹ Consider the tree of shortest paths ending at y . x y

  49. Number of pivots ‣ Each directed edge x → y pivots in at most once . ▹ Consider the tree of shortest paths ending at y . x → y pivots in x → y pivots out x y

  50. Number of pivots ‣ So the overall number of pivots is only O( n )! x → y pivots in x → y pivots out x y

  51. Number of pivots ‣ So the overall number of pivots is only O( n )! ‣ But how do we find these pivots quickly? x → y pivots in x → y pivots out x y

  52. How shortest paths work [Ford 1956] ‣ Input: 10 3 2 ▹ Directed graph G = (V, E) 1 7 12 ▹ length ℓ ( u → v ) for each edge u → v 0 5 10 12 7 ▹ A source vertex s . 8 7 4 17 3 ‣ Each vertex v maintains two values: 4 3 0 ▹ dist ( v ) is the length of some path from s to v ▹ pred ( v ) is the next-to-last vertex of that path from s to v .

  53. How shortest paths work [Ford 1956] ‣ Edge u → v is tense iff dist ( v ) ≥ dist ( u ) + ℓ ( u → v ). 10 3 2 1 7 12 0 5 10 7 12 8 7 17 4 3 4 3 0

  54. How shortest paths work [Ford 1956] ‣ Edge u → v is tense iff dist ( v ) ≥ dist ( u ) + ℓ ( u → v ). 10 3 2 1 7 12 0 5 10 7 12 8 7 17 4 3 4 3 0

  55. How shortest paths work [Ford 1956] ‣ Edge u → v is tense iff dist ( v ) ≥ dist ( u ) + ℓ ( u → v ). 10 3 2 1 7 12 0 5 10 7 12 8 7 17 4 3 4 3 0 ‣ To relax u → v , set dist ( v ) = dist ( u ) + ℓ ( u → v ) and pred ( v ) = u

  56. How shortest paths work [Ford 1956] ‣ Edge u → v is tense iff dist ( v ) ≥ dist ( u ) + ℓ ( u → v ). 10 3 2 1 7 12 0 5 10 4 12 8 7 17 4 3 4 3 0 ‣ To relax u → v , set dist ( v ) = dist ( u ) + ℓ ( u → v ) and pred ( v ) = u

  57. How shortest paths work [Ford 1956] ‣ Edge u → v is tense iff dist ( v ) ≥ dist ( u ) + ℓ ( u → v ). 10 3 2 1 7 12 0 5 10 4 12 8 7 17 4 3 4 3 0 ‣ To relax u → v , set dist ( v ) = dist ( u ) + ℓ ( u → v ) and pred ( v ) = u

  58. How shortest paths work [Ford 1956] ‣ Edge u → v is tense iff dist ( v ) ≥ dist ( u ) + ℓ ( u → v ). 7 3 2 1 4 9 0 5 10 4 12 8 7 14 4 3 4 3 0 ‣ If no edges are tense, then dist ( v ) is the length of the shortest path from s to v , for every vertex v .

  59. Back to MSSP [Cabello Chambers Erickson 2013] ‣ Maintain the shortest path tree rooted at a point s that is moving continuously around the outer face. ‣ Also maintain the slack of each edge u → v: slack ( u → v ) := dist ( u ) + ℓ ( u → v ) – dist ( v ) ‣ Distances and slacks change continuously with s , but in a controlled manner. ‣ The shortest path tree is correct as long as slack ( u → v )>0 for every edge u → v.

  60. [Doppler 1842] Distance and slack changes [Fizeau 1848] ‣ Red: dist growing ‣ Blue: dist shrinking u s v

  61. [Doppler 1842] Distance and slack changes [Fizeau 1848] ‣ Red: dist growing ‣ Blue: dist shrinking ‣ Red → red: slack constant ‣ Blue → blue: slack constant ‣ Red → blue: slack growing ‣ Blue → red: slack shrinking u s v

  62. [Doppler 1842] Distance and slack changes [Fizeau 1848] ‣ Red: dist growing ‣ Blue: dist shrinking ‣ Red → red: slack constant ‣ Blue → blue: slack constant ‣ Red → blue: slack growing ‣ Blue → red: slack shrinking ▹ active edges u u s s v v

  63. [von Staudt 1847] Tree-cotree decomposition [Whitney 1932] [Dehn 1936] ‣ Complementary dual spanning tree C * = ( G \ T )* ‣ Red and blue subtrees are separated by a path in C * ‣ Active edges are dual to edges in this path. u s v

  64. [von Staudt 1847] Tree-cotree decomposition [Whitney 1932] [Dehn 1936] ‣ Complementary dual spanning tree C * = ( G \ T )* ‣ Red and blue subtrees are separated by a path in C * ‣ Active edges are dual to edges in this path. u s v

  65. Pivot [Ford 1956] ‣ When slack ( u → v ) becomes 0, relax u → v ▹ Delete pred ( v ) → v from T ▹ Insert u → v into T. ▹ Delete ( u → v)* from C*. ▹ Insert ( pred ( v ) → v )* into C * ▹ Set pred ( u ) := v u s v

  66. Pivot [Ford 1956] ‣ When slack ( u → v ) becomes 0, relax u → v ▹ Delete pred ( v ) → v from T ▹ Insert u → v into T. ▹ Delete ( u → v)* from C*. ▹ Insert ( pred ( v ) → v )* into C * ▹ Set pred ( u ) := v u s v

  67. Pivot [Ford 1956] ‣ When slack ( u → v ) becomes 0, relax u → v ▹ Delete pred ( v ) → v from T ▹ Insert u → v into T. ▹ Delete ( u → v)* from C*. ▹ Insert ( pred ( v ) → v )* into C * ▹ Set pred ( u ) := v u s v

  68. Pivot [Ford 1956] ‣ When slack ( u → v ) becomes 0, relax u → v ▹ Delete pred ( v ) → v from T ▹ Insert u → v into T. ▹ Delete ( u → v)* from C*. ▹ Insert ( pred ( v ) → v )* into C * ▹ Set pred ( u ) := v u s v

  69. Pivot [Ford 1956] ‣ When slack ( u → v ) becomes 0, relax u → v ▹ Delete pred ( v ) → v from T ▹ Insert u → v into T. ▹ Delete ( u → v)* from C*. ▹ Insert ( pred ( v ) → v )* into C * ▹ Set pred ( u ) := v u s v

  70. Pivot [Ford 1956] ‣ When slack ( u → v ) becomes 0, relax u → v ▹ Delete pred ( v ) → v from T ▹ Insert u → v into T. ▹ Delete ( u → v)* from C*. ▹ Insert ( pred ( v ) → v )* into C * ▹ Set pred ( u ) := v u s v

  71. Pivots ‣ Vertices can only change from red to blue. ‣ So any edge that pivots into T stays in T . u s v

  72. Pivots ‣ Vertices can only change from red to blue. ‣ So any edge that pivots into T stays in T . u s v

  73. [Sleator Tarjan 1983] Fast implementation ··· [Tarjan Werneck 2005] ‣ We maintain T and C * in dynamic forest data structures that support the following operations in O (log n ) amortized time: ▹ Remove and insert edges: • C UT ( uv ), L INK ( u , v ) ▹ Maintain distances at vertices of T : • G ET N ODE V ALUE ( v ), A DD S UBTREE (Δ, v ) ▹ Maintain slacks at edges of C *: • G ET D ART V ALUE ( u ︎ → v ), A DD P ATH (Δ, u , v ), M IN P ATH ( u , v ) ‣ So we can identify and execute each pivot in O (log n ) amortized time.

  74. Planar MSSP summary [Klein 2005] ‣ We can (implicitly) compute distances from every boundary vertex to every vertex in any planar map in O( n log n ) time! ‣ More accurately: Given k vertex pairs, where one vertex of each pair is on the boundary, we can compute those k shortest-path distances in O( n log n + k log n ) time.

  75. Higher-genus MSSP ‣ Let Σ be any surface map with genus g . Fix a face f of Σ. ‣ We want to compute the shortest path trees rooted at every vertex of some “outer” face f .

  76. Higher-genus MSSP ‣ Let Σ be any surface map with genus g . Fix a face f of Σ. ‣ We want to compute the shortest path trees rooted at every vertex of some “outer” face f .

  77. Higher-genus MSSP ‣ Let Σ be any surface map with genus g . Fix a face f of Σ. ‣ We want to compute the shortest path trees rooted at every vertex of some “outer” face f .

  78. Higher-genus MSSP ‣ Let Σ be any surface map with genus g . Fix a face f of Σ. ‣ We want to compute the shortest path trees rooted at every vertex of some “outer” face f .

  79. Higher-genus MSSP ‣ Let Σ be any surface map with genus g . Fix a face f of Σ. ‣ We want to compute the shortest path trees rooted at every vertex of some “outer” face f .

  80. Same strategy! ‣ Move a point s continously around f , maintaining both the shortest-path tree rooted at s and the complementary slacks. Whenever a non-tree edge becomes tense, relax it.

  81. Same strategy! ‣ Move a point s continously around f , maintaining both the shortest-path tree rooted at s and the complementary slacks. Whenever a non-tree edge becomes tense, relax it.

  82. Complementary grove ‣ The dual cut graph X * = ( G \ T )* is no longer a spanning tree! ‣ Grove decomposition : partition X * into 6 g subtrees of G *. ▹ Each subtree contains one dual cut path and all attached “hair” ▹ Maintain each subtree in its own dynamic forest data structure

  83. Where are the pivots? ‣ All active edges are dual to edges in some dual cut path. ‣ We can find and execute each pivot using O( g ) dynamic forest operations = O( g log n ) amortized time.

  84. How many pivots? ‣ Each directed edge pivots into T at most 4 g times. ▹ 4 g = max # disjoint non-homotopic paths between two points in Σ ▹ = # edges in a system of quads! ‣ So the total number of pivots is O( gn )

  85. [Cabello Chambers Erickson 2013] Summary [Fox Erickson Lkhamsuren 2018] ‣ Given any surface map Σ with complexity n and genus g , with non-negatively weighted edges, and a face f. ‣ We can (implicitly) compute shortest-path distances from every vertex of f to every vertex of Σ... ▹ in O( gn log n ) time with high probability ▹ or in O(min{ g , log n } · gn log n ) worst-case deterministic time

  86. Picky details [Cabello Chambers Erickson 2013] ‣ Everything so far assumes that shortest paths are unique, and that at most one edge becomes tense at a time. ‣ We can enforce this assumption by perturbing the edge weights. ▹ Randomized perturbation: O(1) time penalty, but succeeds only with high probability 
 [Mulmuley Vazirani Vazirani 1987] ▹ Lexicographic perturbation: O(log n ) time penalty 
 [Charnes 1952] [Dantzig Orden Wolfe 1955] ▹ Homologically-least leftmost (“holiest”) perturbation: O( g ) time penalty 
 [Fox Erickson Lkhamsuren 2018]

  87. Shortest nontrivial cycles, take 2

  88. Faster algorithm [Cabello Chambers 2007] To compute the shortest nonseparating cycle: ▹ Compute a greedy system of cycles γ 1 , γ 2 , ..., γ 2 g ▹ Find the shortest cycle that crosses each greedy cycle γ i once

  89. Algorithm [Cabello Chambers 2007] ‣ To find the shortest cycle that crosses γ i once: ▹ Cut the surface open along γ i . Resulting surface Σ ✂ γ i has two copies of γ on its boundary. ▹ Find shortest path in Σ ✂ γ i between two copies of each vertex of γ i ▹ MSSP: O( gn log n ) time with high probability

Recommend


More recommend