ignazio scimemi
play

Ignazio Scimemi Universidad Complutense de Madrid (UCM) In - PowerPoint PPT Presentation

Ignazio Scimemi Universidad Complutense de Madrid (UCM) In collaboration with A. Idilbi arXive:1009.xxxx and work in progress with M. Garca Echevarra SCET and its building blocks Gauge invariance for covariant gauges Gauge


  1. Ignazio Scimemi Universidad Complutense de Madrid (UCM) In collaboration with A. Idilbi arXive:1009.xxxx and work in progress with M. García Echevarría

  2.  SCET and its building blocks  Gauge invariance for covariant gauges  Gauge invariance for singular gauges (Light-cone gauge)  A new Wilson line in SCET: T  Conclusions

  3.  SCET (soft collinear effective theory) is an effective theory of QCD  SCET describes interactions between low energy ,” soft ” partonic fields and collinear fields (very energetic in one light-cone direction)  SCET and QCD have the same infrared structure: matching is possible  SCET helps in the proof of factorization theorems and identification of relevant scales

  4. Bauer, Fleming, Pirjol, Stewart, „00 Light-cone coordinates   ~ np Q    ipx ( ) ( ) x e x , n p  ~ p Q n p   2 ~       np Q nn nn             4 4 Integrated out with EOM 4

  5. Bauer, Fleming, Pirjol, Stewart, „00 Light-cone coordinates Leading order Lagrangian (n-collinear)           ( ) exp ( ) W x P ig ds n A ns x   n   0 5

  6. 6

  7. The SCET Lagrangian is formed by gauge invariant building blocks. Gauge Transformations:      U W Is gauge invariant   n   W W U n n

  8. • PDF In Full QCD • Factorization In SCET [Neubert et.al] • PDF In SCET: [Stewart et.al]  x  is gauge invariant because each 2 ( , ) f building block is gauge Invariant

  9. • In Full QCD And At Low Transverse Momentum: Ji, Ma,Yuan „04 • “Naïve” Transverse Momentum Dependent PDF (TMDPDF):  / q Q S Analogous to the W in SCET This result is true only in “regular” gauges: Here all fields vanish at infinity

  10.   Ji, Ma, Yuan  b  b  ( , ) ( , )  Ji, Yuan   Belitsky, Ji, Yuan   Cherednikov, Stefanis ( , 0 ) ( 0 , 0 )  • For gauges not vanishing at infinity [Singular Gauges] like the Light-Cone gauge (LC) one needs to introduce an additional   Gauge Link which connects with to make it   b ( , 0 ) ( , )   Gauge Invariant • In LC Gauge This Gauge Link Is Built From The Transverse Component Of The Gluon Field:

  11. Are TMDPDF fundamental matrix elements in SCET? Are SCET matrix elements gauge invariant? Where are transverse gauge link in SCET? W     † LC gauge

  12. We calculate at one-loop in Feynman  an Gauge e and In LC LC † 0 W q n n gauge In Feynam amn Gauge ge

  13. We calculate at one-loop in Feynman  an Gauge e and In LC LC † 0 W q n n gauge In LC Gauge ge      † 0 1 A W W n n     n k n k i         ( ) D k g           2 0 k i k    

  14. We calculate at one-loop in Feynman  an Gauge e and In LC LC † 0 W q n n gauge In LC Gauge     n k n k i         ( ) D k g           2 0 k i k     2    ip n                  (Pr ) (Pr ) es es p p p I p I p p  , , LC Fey Ax w Fey w Ax 2

  15. We calculate at one-loop in Feynman  an Gauge e and In LC LC † 0 W q n n gauge In LC Gauge The gauge 2    ip n                  invariance is (Pr es ) (Pr es ) p p p I p I p p  LC Fey Ax w Fey , w Ax , 2 ensured when   d  d k p k   1   (Pres) 2 2      4 I ig C   (Pres)  ,   I I w A x F d k 2  2     (2 ) 0 0 i p k i k , , w A x n F ey   2     d  d k p k      2 2        2 I ig C  , n Fey F d k  2 2      (2 ) 0 0 0 i p k i k i Gauge invariance is realized only with one prescription!!

  16. The SCET matrix element is not gauge    † 0| | W q n n invariant . Using LC gauge the result of the one-loop correction depends on the used prescription.         0 0 i i Gauge invariance is I p I p , , w Ax w Ax violated with – i0 prescription. The same occurs with PV, ML

  17. In order to restore gauge invariance we have to introduce a new Wilson line, T, in SCET matrix elements             † ( , ) exp · ( , ; ) T x x P ig d l A x l x          n 0    † † And the new gauge invariant matrix element is 0| | T W q n n n

  18. † 1   In covariant gauges , so we recover the T T SCET results    † 0| | W q n n In LC gauge    † 0| | T q n n

  19.      (Pres) (Pres) d d k p k C C        (Pres) 2 2 2   I C g i         , T Ax F 2 2 d (2 ) ( 0)(( ) 0)  0 0  k i p k i k i k i Prescription C∞ +i0 0 -i0 1 PV 1/2  1   (Pres) (Pres) k  ML Θ ( ) I I I , , , n Fey w Ax T Ax 2 All prescription dependence cancels out and gauge invariance is restored no matter what prescription is used    † †    † 0| | T W n q 0| | W q n n n n Covariant Gauges In All Gauges

  20. • TMDPDF     † † ( ) ( , ) ( ) ( ) y y T y W y y  n n n n    n n           (2) | ( )   ( ) (0) | P y x p P   q P / n n n n   np 2 We Can Define A Gauge Invariant TMDPDF In SCET (And Factorize SIDIS)

  21. • Application To Heavy-Ion Physics D´Eramo, Liu, Rajagopal In LC Gauge The Above Quantity Is Meaningless. If We Add To It The T-Wilson line Then We Get A Gauge Invariant Physical Entity.

  22. Conclusions The usual SCET building blocks have to be modified introducing a New Gauge Link, the T-Wilson line. Using the new formalism we get gauge invariant definitions of non-perturbative matrix elements. In particular the T is compulsory for matrix elements of fields separated in the transverse direction. These matrix elements are relevant in semi-inclusive cross sections or transverse momentum dependent ones. It is possible that the use of LC gauge helps in the proofs of factorization. The inclusion of T is so fundamental. Work in progress in this direction.

Recommend


More recommend