hyperplane arrangements graphic monoids and moment
play

Hyperplane arrangements, graphic monoids and moment categories - PowerPoint PPT Presentation

Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements, graphic monoids and moment categories Clemens Berger University of Nice-Sophia Antipolis CT 2016 in Halifax August 11, 2016 Hyperplane arrangements,


  1. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements, graphic monoids and moment categories Clemens Berger University of Nice-Sophia Antipolis CT 2016 in Halifax August 11, 2016

  2. Hyperplane arrangements, graphic monoids and moment categories Introduction 1 Hyperplane arrangements 2 Graphic monoids 3 Moment categories 4 Unital moment categories 5

  3. Hyperplane arrangements, graphic monoids and moment categories Introduction Purpose of the talk algebraisation (hyperplane arrangements) (graphic monoids) � categorification (graphic monoids) (moment categories) � (unital moment categories) semantics (operads) � Examples (Fox-Neuwirth, Salvetti, McClure-Smith, Berger-Fresse) (braid arrangements) � (symmetric groups) � ( E n -operads)

  4. Hyperplane arrangements, graphic monoids and moment categories Introduction Purpose of the talk algebraisation (hyperplane arrangements) (graphic monoids) � categorification (graphic monoids) (moment categories) � (unital moment categories) semantics (operads) � Examples (Fox-Neuwirth, Salvetti, McClure-Smith, Berger-Fresse) (braid arrangements) � (symmetric groups) � ( E n -operads)

  5. Hyperplane arrangements, graphic monoids and moment categories Introduction Purpose of the talk algebraisation (hyperplane arrangements) (graphic monoids) � categorification (graphic monoids) (moment categories) � (unital moment categories) semantics (operads) � Examples (Fox-Neuwirth, Salvetti, McClure-Smith, Berger-Fresse) (braid arrangements) � (symmetric groups) � ( E n -operads)

  6. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Definition (hyperplane arrangements in R n ) A linear hyperplane arrangement A = { H α ⊂ R n , α ∈ |A|} is essential iff � α ∈|A| H α = (0); Coxeter iff ∀ α, β ∈ |A| : s α ( H β ) ∈ A where s α is the orthogonal reflection with respect to the hyperplane H α . Proposition (Coxeter,Tits) There is a one-to-one correspondence ∼ = (essential Coxeter arrangements) ↔ (finite Coxeter groups) ∼ = A G ↔ G

  7. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Definition (hyperplane arrangements in R n ) A linear hyperplane arrangement A = { H α ⊂ R n , α ∈ |A|} is essential iff � α ∈|A| H α = (0); Coxeter iff ∀ α, β ∈ |A| : s α ( H β ) ∈ A where s α is the orthogonal reflection with respect to the hyperplane H α . Proposition (Coxeter,Tits) There is a one-to-one correspondence ∼ = (essential Coxeter arrangements) ↔ (finite Coxeter groups) ∼ = A G ↔ G

  8. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Definition (hyperplane arrangements in R n ) A linear hyperplane arrangement A = { H α ⊂ R n , α ∈ |A|} is essential iff � α ∈|A| H α = (0); Coxeter iff ∀ α, β ∈ |A| : s α ( H β ) ∈ A where s α is the orthogonal reflection with respect to the hyperplane H α . Proposition (Coxeter,Tits) There is a one-to-one correspondence ∼ = (essential Coxeter arrangements) ↔ (finite Coxeter groups) ∼ = A G ↔ G

  9. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Definition (hyperplane arrangements in R n ) A linear hyperplane arrangement A = { H α ⊂ R n , α ∈ |A|} is essential iff � α ∈|A| H α = (0); Coxeter iff ∀ α, β ∈ |A| : s α ( H β ) ∈ A where s α is the orthogonal reflection with respect to the hyperplane H α . Proposition (Coxeter,Tits) There is a one-to-one correspondence ∼ = (essential Coxeter arrangements) ↔ (finite Coxeter groups) ∼ = A G ↔ G

  10. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Example (symmetric group S 3 and its A S 3 in R 2 ) H + H + [123] 23 12 [132] [213] H − H + · 13 13 [312] [231] H − H − [321] 12 23 Definition (face poset F A ) F A S 3 = { 6 facets of dim 2 , 6 facets of dim 1 , 1 facet of dim 0 }

  11. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Example (symmetric group S 3 and its A S 3 in R 2 ) H + H + [123] 23 12 [132] [213] H − H + · 13 13 [312] [231] H − H − [321] 12 23 Definition (face poset F A ) F A S 3 = { 6 facets of dim 2 , 6 facets of dim 1 , 1 facet of dim 0 }

  12. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Example (symmetric group S 3 and its A S 3 in R 2 ) H + H + [123] 23 12 [132] [213] H − H + · 13 13 [312] [231] H − H − [321] 12 23 Definition (face poset F A ) F A S 3 = { 6 facets of dim 2 , 6 facets of dim 1 , 1 facet of dim 0 }

  13. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Lemma (face monoid F A with facets x , y , z ) def ⇐ ⇒ ∀ s ∈ x , t ∈ y : s + ǫ ( t − s ) ∈ z for ǫ > 0 small xy = z (0) is neutral element; ∀ x , y ∈ F A ; xyx = xy x ⊂ ¯ y ⇐ ⇒ xy = y ; the univ. comm. quotient of F A is a geometric lattice L A . Definition ( k -th complement of an arrangement) M k ( A ) = R n ⊗ R k − � α ∈|A| H α ⊗ R k Theorem (Orlik-Solomon, Salvetti) L A ( F A ) determines cohomology (homotopy type) of M 2 ( A ).

  14. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Lemma (face monoid F A with facets x , y , z ) def ⇐ ⇒ ∀ s ∈ x , t ∈ y : s + ǫ ( t − s ) ∈ z for ǫ > 0 small xy = z (0) is neutral element; ∀ x , y ∈ F A ; xyx = xy x ⊂ ¯ y ⇐ ⇒ xy = y ; the univ. comm. quotient of F A is a geometric lattice L A . Definition ( k -th complement of an arrangement) M k ( A ) = R n ⊗ R k − � α ∈|A| H α ⊗ R k Theorem (Orlik-Solomon, Salvetti) L A ( F A ) determines cohomology (homotopy type) of M 2 ( A ).

  15. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Lemma (face monoid F A with facets x , y , z ) def ⇐ ⇒ ∀ s ∈ x , t ∈ y : s + ǫ ( t − s ) ∈ z for ǫ > 0 small xy = z (0) is neutral element; ∀ x , y ∈ F A ; xyx = xy x ⊂ ¯ y ⇐ ⇒ xy = y ; the univ. comm. quotient of F A is a geometric lattice L A . Definition ( k -th complement of an arrangement) M k ( A ) = R n ⊗ R k − � α ∈|A| H α ⊗ R k Theorem (Orlik-Solomon, Salvetti) L A ( F A ) determines cohomology (homotopy type) of M 2 ( A ).

  16. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Lemma (face monoid F A with facets x , y , z ) def ⇐ ⇒ ∀ s ∈ x , t ∈ y : s + ǫ ( t − s ) ∈ z for ǫ > 0 small xy = z (0) is neutral element; ∀ x , y ∈ F A ; xyx = xy x ⊂ ¯ y ⇐ ⇒ xy = y ; the univ. comm. quotient of F A is a geometric lattice L A . Definition ( k -th complement of an arrangement) M k ( A ) = R n ⊗ R k − � α ∈|A| H α ⊗ R k Theorem (Orlik-Solomon, Salvetti) L A ( F A ) determines cohomology (homotopy type) of M 2 ( A ).

  17. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Lemma (face monoid F A with facets x , y , z ) def ⇐ ⇒ ∀ s ∈ x , t ∈ y : s + ǫ ( t − s ) ∈ z for ǫ > 0 small xy = z (0) is neutral element; ∀ x , y ∈ F A ; xyx = xy x ⊂ ¯ y ⇐ ⇒ xy = y ; the univ. comm. quotient of F A is a geometric lattice L A . Definition ( k -th complement of an arrangement) M k ( A ) = R n ⊗ R k − � α ∈|A| H α ⊗ R k Theorem (Orlik-Solomon, Salvetti) L A ( F A ) determines cohomology (homotopy type) of M 2 ( A ).

  18. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Lemma (face monoid F A with facets x , y , z ) def ⇐ ⇒ ∀ s ∈ x , t ∈ y : s + ǫ ( t − s ) ∈ z for ǫ > 0 small xy = z (0) is neutral element; ∀ x , y ∈ F A ; xyx = xy x ⊂ ¯ y ⇐ ⇒ xy = y ; the univ. comm. quotient of F A is a geometric lattice L A . Definition ( k -th complement of an arrangement) M k ( A ) = R n ⊗ R k − � α ∈|A| H α ⊗ R k Theorem (Orlik-Solomon, Salvetti) L A ( F A ) determines cohomology (homotopy type) of M 2 ( A ).

  19. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Lemma (face monoid F A with facets x , y , z ) def ⇐ ⇒ ∀ s ∈ x , t ∈ y : s + ǫ ( t − s ) ∈ z for ǫ > 0 small xy = z (0) is neutral element; ∀ x , y ∈ F A ; xyx = xy x ⊂ ¯ y ⇐ ⇒ xy = y ; the univ. comm. quotient of F A is a geometric lattice L A . Definition ( k -th complement of an arrangement) M k ( A ) = R n ⊗ R k − � α ∈|A| H α ⊗ R k Theorem (Orlik-Solomon, Salvetti) L A ( F A ) determines cohomology (homotopy type) of M 2 ( A ).

  20. Hyperplane arrangements, graphic monoids and moment categories Hyperplane arrangements Lemma (face monoid F A with facets x , y , z ) def ⇐ ⇒ ∀ s ∈ x , t ∈ y : s + ǫ ( t − s ) ∈ z for ǫ > 0 small xy = z (0) is neutral element; ∀ x , y ∈ F A ; xyx = xy x ⊂ ¯ y ⇐ ⇒ xy = y ; the univ. comm. quotient of F A is a geometric lattice L A . Definition ( k -th complement of an arrangement) M k ( A ) = R n ⊗ R k − � α ∈|A| H α ⊗ R k Theorem (Orlik-Solomon, Salvetti) L A ( F A ) determines cohomology (homotopy type) of M 2 ( A ).

Recommend


More recommend