hypercontractivity and information theory
play

Hypercontractivity and Information Theory Chandra Nair The Chinese - PowerPoint PPT Presentation

Hypercontractivity and Information Theory Chandra Nair The Chinese University of Hong Kong August 25, 2016 Introduction Hypercontractive Inequalities: a review Hypercontractive inequalities: an introduction Disclaimer : If you are a


  1. Hypercontractivity and Information Theory Chandra Nair The Chinese University of Hong Kong August 25, 2016

  2. Introduction Hypercontractive Inequalities: a review Hypercontractive inequalities: an introduction Disclaimer : If you are a mathematician Hypercontractivity is usually discussed using the language of Markov semi-groups In this talk, I will use conditional expectations (snapshot rather than a time-indexed family) to discuss hypercontractivity chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 2 / 25

  3. Introduction Hypercontractive Inequalities: a review Hypercontractive inequalities: an introduction Disclaimer : If you are a mathematician Hypercontractivity is usually discussed using the language of Markov semi-groups In this talk, I will use conditional expectations (snapshot rather than a time-indexed family) to discuss hypercontractivity Elementary result Conditional expectation (a Markov operator) is contractive � E( X | Y ) � p ≤ � X � p , ∀ p ≥ 1 , where � X � p = E( | X | p ) 1 /p . chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 2 / 25

  4. Introduction Hypercontractive Inequalities: a review Hypercontractive inequalities: an introduction Disclaimer : If you are a mathematician Hypercontractivity is usually discussed using the language of Markov semi-groups In this talk, I will use conditional expectations (snapshot rather than a time-indexed family) to discuss hypercontractivity Elementary result Conditional expectation (a Markov operator) is contractive � E( X | Y ) � p ≤ � X � p , ∀ p ≥ 1 , where � X � p = E( | X | p ) 1 /p . Hypercontractivity ( X, Y ) ∼ µ XY satisfies ( p, q )-hypercontractivity (1 ≤ q ≤ p ) if � E( g ( Y ) | X ) � p ≤ � g ( Y ) � q ∀ g ≥ 0 . chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 2 / 25

  5. Introduction Hypercontractive Inequalities: a review Background Hypercontractive inequalities have been used in Quantum field theory Establish best constants in classical inequalities Bounds on semi-group kernels chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 3 / 25

  6. Introduction Hypercontractive Inequalities: a review Background Hypercontractive inequalities have been used in Quantum field theory Establish best constants in classical inequalities Bounds on semi-group kernels Boolean function analysis (KKL theorem on influences) This talk : relation to (network) information theory equivalent characterizations why should information-theorists care why this relationship may interest mathematicians chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 3 / 25

  7. Part I Equivalent characterizations of hypercontractive inequalities using information measures

  8. Equivalent characterizations Hypercontractivity Elementary exercises Definition : ( X, Y ) ∼ µ XY is ( p, q )-hypercontractive for 1 ≤ q ≤ p if � E( g ( Y ) | X ) � p ≤ � g ( Y ) � q ∀ g ≥ 0 . chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 5 / 25

  9. Equivalent characterizations Hypercontractivity Elementary exercises Definition : ( X, Y ) ∼ µ XY is ( p, q )-hypercontractive for 1 ≤ q ≤ p if � E( g ( Y ) | X ) � p ≤ � g ( Y ) � q ∀ g ≥ 0 . An equivalent condition : ( X, Y ) ∼ µ XY is ( p, q )-hypercontractive for 1 ≤ q ≤ p if and only if E( f ( X ) g ( Y )) ≤ � f ( X ) � p ′ � g ( Y ) � q ∀ f, g ≥ 0 , where p ′ = p p − 1 , the H¨ older conjugate. Proof : An application of H¨ older’s inequality. chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 5 / 25

  10. Equivalent characterizations Hypercontractivity Elementary exercises Definition : ( X, Y ) ∼ µ XY is ( p, q )-hypercontractive for 1 ≤ q ≤ p if � E( g ( Y ) | X ) � p ≤ � g ( Y ) � q ∀ g ≥ 0 . An equivalent condition : ( X, Y ) ∼ µ XY is ( p, q )-hypercontractive for 1 ≤ q ≤ p if and only if E( f ( X ) g ( Y )) ≤ � f ( X ) � p ′ � g ( Y ) � q ∀ f, g ≥ 0 , where p ′ = p p − 1 , the H¨ older conjugate. Proof : An application of H¨ older’s inequality. Tensorization property : Let ( X 1 , Y 1 ) ∼ µ 1 XY be independent of ( X 2 , Y 2 ) ∼ µ 2 XY , and let ( X 1 , Y 1 ) and ( X 2 , Y 2 ) be ( p, q )-hypercontractive. Then (( X 1 , X 2 ) , ( Y 1 , Y 2 )) is also ( p, q )-hypercontractive. chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 5 / 25

  11. Equivalent characterizations Hypercontractivity Elementary exercises continued... Define : r p ( X ; Y ) = 1 p × { inf q : ( X, Y ) is ( p, q )-hypercontractive . } 1 r p ( X ; Y ) is decreasing in p . 2 The p → ∞ limit of r p ( X ; Y ) is given by � � e E(log g ( Y ) | X ) � � r ∞ ( X ; Y ) = inf r : E ≤ � g ( Y ) � r ∀ g > 0 . chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 6 / 25

  12. Equivalent characterizations Hypercontractivity Elementary exercises continued... Define : r p ( X ; Y ) = 1 p × { inf q : ( X, Y ) is ( p, q )-hypercontractive . } 1 r p ( X ; Y ) is decreasing in p . 2 The p → ∞ limit of r p ( X ; Y ) is given by � � e E(log g ( Y ) | X ) � � r ∞ ( X ; Y ) = inf r : E ≤ � g ( Y ) � r ∀ g > 0 . A (slightly) non-trivial inequality: If ( X, Y ) is ( p, q )-hypercontractive then q − 1 p − 1 ≥ ρ 2 m ( X ; Y ) , where ρ 2 m ( X ; Y ) is the maximal correlation . Maximal correlation : ρ m ( X ; Y ) = sup f,g E( f ( X ) g ( Y )) where f, g satisfy E( f ( X )) = 0 = E( g ( Y )) and E( f 2 ( X )) = 1 = E( g 2 ( Y )). A proof follows using perturbations from constant functions along directions induced by the optimizers for maximal correlation. chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 6 / 25

  13. Equivalent characterizations Hypercontractivity Equivalent characterizations Ahlswede-G´ acs ’76 D ( ν Y � µ Y ) r ∞ ( X ; Y ) = sup D ( ν X � µ X ) , ν X ≪ µ x where ν Y is the (output) distribution induced by operating the same channel µ Y | X on the input distribution ν X . Remark : G´ acs (independently) observed and used the hypercontraction of the Markov operator to study: Images of a set via a channel or equivalently Region where measure concentrates when a noise operator is applied to a set chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 7 / 25

  14. Equivalent characterizations Hypercontractivity Equivalent characterizations Ahlswede-G´ acs ’76 D ( ν Y � µ Y ) r ∞ ( X ; Y ) = sup D ( ν X � µ X ) , ν X ≪ µ x where ν Y is the (output) distribution induced by operating the same channel µ Y | X on the input distribution ν X . Remark : G´ acs (independently) observed and used the hypercontraction of the Markov operator to study: Images of a set via a channel or equivalently Region where measure concentrates when a noise operator is applied to a set Anantharam-Gohari-Kamath-Nair ’13 D ( ν Y � µ Y ) I ( U ; Y ) r ∞ ( X ; Y ) = sup D ( ν X � µ X ) = sup I ( U ; X ) ν X ≪ µ x U : U − X − Y = inf { λ : K X [ H ( Y ) − λH ( X )] µ = H µ ( Y ) − λH µ ( X ) } Remark : Our interest was motivated by the tensorization property (clear later) chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 7 / 25

  15. Equivalent characterizations Hypercontractivity Entire regime, p ≥ 1 The following conditions are equivalent: 1 � E( g ( Y ) | X ) � p ≤ � g ( Y ) � q ∀ g ≥ 0 . 2 E( f ( X ) g ( Y )) ≤ � f ( X ) � p ′ � g ( Y ) � q ∀ f, g ≥ 0 . chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 8 / 25

  16. Equivalent characterizations Hypercontractivity Entire regime, p ≥ 1 The following conditions are equivalent: 1 � E( g ( Y ) | X ) � p ≤ � g ( Y ) � q ∀ g ≥ 0 . 2 E( f ( X ) g ( Y )) ≤ � f ( X ) � p ′ � g ( Y ) � q ∀ f, g ≥ 0 . 3 Using relative entropies (Carlen – Cordero-Erasquin ’09, Nair ’14, Friedgut ’15) p ′ D ( ν X � µ X ) + 1 1 q D ( ν Y � µ Y ) ≤ D ( ν XY � µ XY ) ∀ ν XY ≪ µ XY . chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 8 / 25

  17. Equivalent characterizations Hypercontractivity Entire regime, p ≥ 1 The following conditions are equivalent: 1 � E( g ( Y ) | X ) � p ≤ � g ( Y ) � q ∀ g ≥ 0 . 2 E( f ( X ) g ( Y )) ≤ � f ( X ) � p ′ � g ( Y ) � q ∀ f, g ≥ 0 . 3 Using relative entropies (Carlen – Cordero-Erasquin ’09, Nair ’14, Friedgut ’15) p ′ D ( ν X � µ X ) + 1 1 q D ( ν Y � µ Y ) ≤ D ( ν XY � µ XY ) ∀ ν XY ≪ µ XY . 4 Using mutual information and auxiliary variables (Nair ’14) p ′ I ( U ; X ) + 1 1 q I ( U ; Y ) ≤ I ( U ; XY ) ∀ µ U | XY . 5 Using convex envelopes (Nair ’14) � 1 p ′ H ( X ) + 1 � = 1 p ′ H µ ( X ) + 1 q H ( Y ) − H ( XY ) q H µ ( Y ) − H µ ( XY ) . K XY µ XY chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 8 / 25

  18. Equivalent characterizations Hypercontractivity Some remarks on equivalence proof Functional form = ⇒ mutual information condition Use tensorization property: f ( X n ) = 1 A , where A = { x n : ( u n 0 , x n ) is jointly typical } g ( Y n ) = 1 B , where B = { y n : ( u n 0 , y n ) is jointly typical } chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 9 / 25

  19. Equivalent characterizations Hypercontractivity Some remarks on equivalence proof Functional form = ⇒ mutual information condition Use tensorization property: f ( X n ) = 1 A , where A = { x n : ( u n 0 , x n ) is jointly typical } g ( Y n ) = 1 B , where B = { y n : ( u n 0 , y n ) is jointly typical } Mutual information condition = ⇒ relative entropy condition A (natural) perturbation argument chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 9 / 25

Recommend


More recommend