how feasibly can we distinguish models of the eor with up
play

HOW FEASIBLY CAN WE DISTINGUISH MODELS OF THE EOR WITH UP AND - PowerPoint PPT Presentation

HOW FEASIBLY CAN WE DISTINGUISH MODELS OF THE EOR WITH UP AND COMING EXPERIMENTS? TOM BINNIE IMPERIAL COLLEGE LONDON Who am I ? https://arxiv.org/abs/1903.09064 Talk Plan Intros to The EoR 21cm Telescope Bayesian Statistics


  1. HOW FEASIBLY CAN WE DISTINGUISH MODELS OF THE EOR WITH UP AND COMING EXPERIMENTS? TOM BINNIE IMPERIAL COLLEGE LONDON

  2. Who am I ? https://arxiv.org/abs/1903.09064

  3. Talk Plan Intros to • The EoR • 21cm • Telescope • Bayesian Statistics • Toy EoR models • Better EoR models

  4. The Epoch of Reionisation • The most recent phase change of the Universe. • Current observational techniques probe z ~ 1100 and z ~ 7. • Up and coming Telescopes e.g. LOFAR, HERA and SKA aim to improve this.

  5. Current EoR Probes • Planck CMB optical depth (Planck Collaboration XLVII 2016) τ = ∫ 𝑜 𝜏 𝑒𝑚 τ = 0.058 ± 0.012

  6. ̅ ̅ Current EoR Probes -QSOs - Gunn Peterson Trough (z=5.9) (McGreer, Mesinger & D’Odorico 2015) – half gaussian 𝑦 *+ = 0.06, σ = 0.05 - Red Ly- 𝛽 Damping Wing (z=7.08) (Greig et al. 2017) 74.89 𝑦 *+ = 0.4 34.56 (2σ).

  7. The 21cm Signal • the electron's spin-flip emission from a Hydrogen atom . < => 𝑜 9 = 3𝑓 ? @ A B 𝑜 4 • Rayleigh-Jeans approximation + F G H 𝑈 D ≈ 6? @ I

  8. The 21cm Signal • We write 𝑈 D in terms of the optical depth 𝑈 D = 𝑈 J − 𝑈 LMD 𝜐 I (1 + 𝑨) And substitute (Furlanetto, Oh & Briggs 2006)

  9. The 21cm Signal – milestones • 200 > z > ~50 - As the universe expands, concentrations of particles decrease – gas and T spin cool adiabatically • z < ~50 – collisional coupling stops à T spin returns to equilibrium with T CMB • z? - First stars cause a resonant scattering of Ly- 𝛽 photons (The (Loeb & Furlanetto 2012) Wouthuysen-Field effect)

  10. The 21cm Signal – milestones • z > 10 - Brightness temperature dictated by T spin fluctuations • z ~ 10 – ‘post heating regime’ à T spin >> T CMB • z ~ 6 Reionisation is complete 𝑦 *+ à 0) ( ̅ (Loeb & Furlanetto 2012)

  11. Epoch of Heating Post Heating Finish First Stars T spin à T CMB (Loeb & Pritchard 2012)

  12. Experiments • Three Telescopes • Modelled with 21cmSense (Pober 2014) • Assumed all foregrounds can be constrained to the wedge • Assumed Baselines added coherently • Possible Noise reduction à increase integration time t à vary the basslines (~ i ) Figure credit (Greig, Mesinger, Koopmans 2015)

  13. LOFAR-48 • Collecting area 35,762 m 2 • 214 Independent UV bins • 13 Hours of published data (Patil et al. 2017)

  14. SKA-512 • 492 602 m 2 in the central 296 stations (left) • 87160 independent uv bins

  15. HERA • Configurations - 19, 61 (left), 127, 217, 331 (right), 469 • Collecting area (for 331) à 50 953 m 2 • Currently running with 91 Dipoles • Only 25 uv bins

  16. Intro to Bayesian Statistics …Or ℒ U 𝒶 = 𝒬 𝑞( 𝜘|𝐸, ℳ) • 21CMMC is a parameter estimation code… (with uniform priors) à 𝒬 ∝ ℒ

  17. Intro to Bayesian Statistics • Parameters are estimated via MCMC – Markov Chain Monté Carlo • Basic example (Metropolis algorithm): Choose starting point (i) Guess trial point (ii) Accept if ℒ new > ℒ old Repeat

  18. Bayesian Model Selection we want 𝒶 = 𝑞(𝐸|𝑁) – the Bayesian Evidence - Conventionally t ricky to calculate

  19. NE NEST STED SA SAMPLING NG Evidence easily calculated à Nd integral becomes 1d X = fraction of prior volume

  20. Nested Sampling - We use Multinest (Feroz, Hobson et al. 2006) Iso-likelihood contours à Ellipsoidal rejection sampling à Solves Multi-modal likelihoods

  21. Bayesian Model Selection – The Bayes Factor The Jeffreys’ Scale (i) Strong – ℬ 96 > 150 model 1 outperforms model 2 objectively. (ii) Moderate – 10 < ℬ 96 < 150 models ‘likely’ to be distinguishable by this method - Be careful! (iii) Weak – ℬ 96 < 10 models are likely to be indistinguishable by this method

  22. The Savage-Dickey Density Ratio • By ‘nesting’ parameter Θ ∗ • The odds our model is better at Θ = Θ ∗

  23. The State of the Art - 21CMMC (Greig, Mesinger et al. 2015) • Semi-numerical simulation (21cmFAST) • In brief - the Zel’dovich approximation applied to a linear density field realization - Ionising photons are compared to the number of baryons in a given region

  24. The State of the Art - 21CMMC (Greig, Mesinger et al. 2015)

  25. TH THE STATE TE OF TH THE ART T - 21C 21CMMC (GRE REIG, MESINGER R ET AL. 2015) 2015) • Global inside-out Reionisation (3 parameters) (FZH - Furlanetto, Zaldariaggan, Hernquist 2004) 𝜂 - the ionising efficiency of galaxies. 𝑆 mfp – mean free path of ionising photons log10[Tvir ] - the minimum virial temperature for star-forming galaxies. • Excursion set formalism applied to reionisation bubbles

  26. x 9 z{ • 𝑔 Gpqq = 𝑛 z| 𝑒𝑛 r s ∫ Fuw M tuv • Iterated from R mfp to Pixel size • Post-heating regime Ts >> TCMB • Neutral fraction is counted

  27. 21CMMC (blue) and Multinest (red) agree

  28. Toy Models • Defined by scale and morphology – based on two models: • FZH (as in 21cmmc, global inside-out) • MHR (local outside-in) – 2 parameters Miralde-Escude, Haenelt, Rees (1999) • ‘i’th pixel defines neutral fraction • Underdensity threshold 𝜀 ~ > 𝜀 pixel

  29. Toy Models + Mathematical Inversions – FZHinv (global outside-in) x Fuw 1 𝑛 𝑒𝑜 M tuv 1 𝑛 𝑒𝑜 𝑔 Gpqq = • 𝑒𝑛 𝑒𝑛 𝑔′ Gpqq = • 𝑒𝑛 𝑒𝑛 𝜍 M 𝜍 M Fuw M tuv 4 ‘

  30. Toy Models + Mathematical Inversions Density Field Filters – MHRinv (local Inside-out) 𝑘 = 𝑂 …~†‡q − 𝑗 Over density threshold 𝜀 ‰ < 𝜀 pixel Gives pixel as ionised

  31. Toy Models + Density Field Filters • Makes MHR and MHRinv Global models • Possibility of third parameter R - (top hat filter radius)

  32. Toy Models - What physics do they capture? FZH (global in-out) - Dense IGM regions form stars - UV radiation dominates large regions MHR (local out-in) - Dense IGM regions recombine fast - UV radiation background eventually percolates Reality will be a combination of the two Other toy models test the methodology

  33. Dotted line represents Inverse model

  34. How do they compare in BMS? Bayes Factors per Model LOFAR-48 > = Global red = outside-in + = Local blue = inside-out

  35. SKA > = Global red = outside-in + = Local blue = inside-out

  36. HERA-331 > = Global red = outside-in + = Local blue = inside-out

  37. Analysing Parameters of Models - SDDR • Cross checks our algorithm • Quantitatively reveals simulation redundancies

  38. Quantifying Inference - Observational Priors are input as Neutral fraction checks Negligible deviation in blue!

  39. Further Model Testing (in progress) • Newer prescriptions of 21CMMC - Coeval cubes à lightcones (Greig, Mesinger 2018b) - Inhomogeneous recombinations (Sobacchi, mesinger 2014) - The Epoch of Heating à (Greig, Mesinger 2018a) - Including UV luminosity functions (Park, Greig, Mesinger, Gillet 2018)

  40. Further Model Testing (in progress) • X-ray heating Parameterisation Introducing E 4 - Minimum Energy of EoR X-rays 𝑀 —˜6?‡™ - soft band X-ray Luminosity M turn incorporates the duty cycle of Galaxies 𝑈 𝑇𝑞𝑗𝑜 no longer ignored

  41. Further Model Testing (in progress) • UV Luminosity Function Parameterisation 𝑇𝐺𝑆~ 𝑁 ∗ How much stuff is in the galaxy forms star? 𝑀 ›™ 𝛽 And over what time? 𝑢 ∗

  42. Breaking degeneracies • Exciting time for astrophysics with JWST, ELT, SPICA on the horizon • Current approximations work for ‘Ensemble of Galaxies’ • IR Luminosity Function Parameterisation (in progress) • How much do Galaxies really contribute to reionization?

  43. The Future • Decisive disfavouring of Toy EoR models will be very feasible with HERA and The SKA (assuming foregrounds can be constrained to the wedge). • Model Selection on real EoR models • Quantifying the inference of Luminosity Functions • Pinning down 𝑔 ‡JG

  44. REFERENCES PRITCHARD J. R., LOEB A., 2012, REP. PROG. PHYS., 75, 086901 LOEB A., FURLANETTO S. R., 2013, THE FIRST GALAXIES IN THE UNIVERSE. - PRINCETON UNIV. PRESS, PRINCETON, NJ BINNIE T., PRITCHARD J. R., 2019, MNRAS, 487, 1160 Thanks for Listening! POBER J. C. ET AL., 2014A, APJ, 782, 66 POBER J. C. ET AL., 2014B, APJ, 788, 96 FEROZ F., HOBSON M. P., BRIDGES M., 2009, MNRAS, 398, 1601 Questions? GREIG B., MESINGER A., 2015, MNRAS, 449, 4246 GREIG B., MESINGER A., 2017A, MNRAS, 472, 2651 GREIG B., MESINGER A., 2017B, MNRAS, 465, 4838 GREIG B., MESINGER A., HAIMAN Z., SIMCOE R. A., 2017, MNRAS, 466,4239 FURLANETTO S. R., ZALDARRIAGA M., HERNQUIST L., 2004, APJ, 613, 1 MIRALDA-ESCUD ´E J., HAEHNELT M., REES M. J., 2000, APJ, 530, 1 MESINGER A., FURLANETTO S., 2007, APJ, 669, 663 MESINGER A., FURLANETTO S., CEN R., 2011, MNRAS, 411, 955 MCGREER I. D., MESINGER A., D’ODORICO V., 2015, MNRAS, 447, 499 PLANCK COLLABORATION XLVII, 2016, A&A, 596, A108 HTTP://WWW.LOFAR.ORG HTTPS://REIONIZATION.ORG HTTPS://WWW.SKATELESCOPE.ORG Photo Credit: CSIRO

Recommend


More recommend