� AQFTs and colored operads ⋄ The definition of AQFT allows for the following generalizations: • Vec K � cocomplete closed symmetric monoidal category T • Loc , causally disjoint and Cauchy � orthogonal category C = ( C , ⊥ ) Def: AQFT ( C , T ) denotes the category of T -valued AQFTs on C Thm: (i) There exists a colored operad O C such that AQFT ( C , T ) ≃ Alg O C ( T ) (ii) Every orthogonal functor F : C → D defines an adjunction � AQFT ( D , T ) : F ∗ F ! : AQFT ( C , T ) Alexander Schenkel ∞ AQFT York 19 4 / 13
� AQFTs and colored operads ⋄ The definition of AQFT allows for the following generalizations: • Vec K � cocomplete closed symmetric monoidal category T • Loc , causally disjoint and Cauchy � orthogonal category C = ( C , ⊥ ) Def: AQFT ( C , T ) denotes the category of T -valued AQFTs on C Thm: (i) There exists a colored operad O C such that AQFT ( C , T ) ≃ Alg O C ( T ) (ii) Every orthogonal functor F : C → D defines an adjunction � AQFT ( D , T ) : F ∗ F ! : AQFT ( C , T ) ⋄ This is extremely useful for local-to-global constructions: Alexander Schenkel ∞ AQFT York 19 4 / 13
� AQFTs and colored operads ⋄ The definition of AQFT allows for the following generalizations: • Vec K � cocomplete closed symmetric monoidal category T • Loc , causally disjoint and Cauchy � orthogonal category C = ( C , ⊥ ) Def: AQFT ( C , T ) denotes the category of T -valued AQFTs on C Thm: (i) There exists a colored operad O C such that AQFT ( C , T ) ≃ Alg O C ( T ) (ii) Every orthogonal functor F : C → D defines an adjunction � AQFT ( D , T ) : F ∗ F ! : AQFT ( C , T ) ⋄ This is extremely useful for local-to-global constructions: • Let j : Loc ⋄ → Loc be full orthogonal subcat of “diamonds” ( M ∼ = R m ) Alexander Schenkel ∞ AQFT York 19 4 / 13
� � AQFTs and colored operads ⋄ The definition of AQFT allows for the following generalizations: • Vec K � cocomplete closed symmetric monoidal category T • Loc , causally disjoint and Cauchy � orthogonal category C = ( C , ⊥ ) Def: AQFT ( C , T ) denotes the category of T -valued AQFTs on C Thm: (i) There exists a colored operad O C such that AQFT ( C , T ) ≃ Alg O C ( T ) (ii) Every orthogonal functor F : C → D defines an adjunction � AQFT ( D , T ) : F ∗ F ! : AQFT ( C , T ) ⋄ This is extremely useful for local-to-global constructions: • Let j : Loc ⋄ → Loc be full orthogonal subcat of “diamonds” ( M ∼ = R m ) • We get extension-restriction adjunction � AQFT ( Loc , T ) : j ∗ = res ext = j ! : AQFT ( Loc ⋄ , T ) Alexander Schenkel ∞ AQFT York 19 4 / 13
� � AQFTs and colored operads ⋄ The definition of AQFT allows for the following generalizations: • Vec K � cocomplete closed symmetric monoidal category T • Loc , causally disjoint and Cauchy � orthogonal category C = ( C , ⊥ ) Def: AQFT ( C , T ) denotes the category of T -valued AQFTs on C Thm: (i) There exists a colored operad O C such that AQFT ( C , T ) ≃ Alg O C ( T ) (ii) Every orthogonal functor F : C → D defines an adjunction � AQFT ( D , T ) : F ∗ F ! : AQFT ( C , T ) ⋄ This is extremely useful for local-to-global constructions: • Let j : Loc ⋄ → Loc be full orthogonal subcat of “diamonds” ( M ∼ = R m ) • We get extension-restriction adjunction � AQFT ( Loc , T ) : j ∗ = res ext = j ! : AQFT ( Loc ⋄ , T ) ∼ = • Descent condition: A ∈ AQFT ( Loc , T ) is j -local iff ǫ A : ext res A − → A Alexander Schenkel ∞ AQFT York 19 4 / 13
� � AQFTs and colored operads ⋄ The definition of AQFT allows for the following generalizations: • Vec K � cocomplete closed symmetric monoidal category T • Loc , causally disjoint and Cauchy � orthogonal category C = ( C , ⊥ ) Def: AQFT ( C , T ) denotes the category of T -valued AQFTs on C Thm: (i) There exists a colored operad O C such that AQFT ( C , T ) ≃ Alg O C ( T ) (ii) Every orthogonal functor F : C → D defines an adjunction � AQFT ( D , T ) : F ∗ F ! : AQFT ( C , T ) ⋄ This is extremely useful for local-to-global constructions: • Let j : Loc ⋄ → Loc be full orthogonal subcat of “diamonds” ( M ∼ = R m ) • We get extension-restriction adjunction � AQFT ( Loc , T ) : j ∗ = res ext = j ! : AQFT ( Loc ⋄ , T ) ∼ = • Descent condition: A ∈ AQFT ( Loc , T ) is j -local iff ǫ A : ext res A − → A Ex: Linear Klein-Gordon theory is j -local (uses also results by [Lang] ) Alexander Schenkel ∞ AQFT York 19 4 / 13
Higher structures in gauge theory Alexander Schenkel ∞ AQFT York 19 5 / 13
What is a gauge theory? “Ordinary” field theory: Set/Space of fields Φ ′ Φ ′′ Φ Alexander Schenkel ∞ AQFT York 19 5 / 13
What is a gauge theory? “Ordinary” field theory: Gauge theory: Set/Space of fields Grpd/Stack of fields Φ ′ A ′ g ′′ g ′ g Φ ′′ A ′′ Φ A Alexander Schenkel ∞ AQFT York 19 5 / 13
What is a gauge theory? “Ordinary” field theory: Gauge theory: Set/Space of fields Grpd/Stack of fields Φ ′ A ′ g ′′ g ′ g Φ ′′ A ′′ Φ A Ex: Groupoid of principal G -bundles with connection on U ∼ = R m A ∈ Ω 1 ( U, g ) Obj: BG con ( U ) = g ∈ C ∞ ( U,G ) � A ⊳ g = g − 1 Ag + g − 1 d g Mor: A Alexander Schenkel ∞ AQFT York 19 5 / 13
What is a gauge theory? “Ordinary” field theory: Gauge theory: Set/Space of fields Grpd/Stack of fields Φ ′ A ′ g ′′ g ′ g Φ ′′ A ′′ Φ A Ex: Groupoid of principal G -bundles with connection on U ∼ = R m A ∈ Ω 1 ( U, g ) Obj: BG con ( U ) = g ∈ C ∞ ( U,G ) � A ⊳ g = g − 1 Ag + g − 1 d g Mor: A Invariant information: = Ω 1 ( U, g ) /C ∞ ( U, G ) (“gauge orbit space”) � � • π 0 BG con ( U ) Alexander Schenkel ∞ AQFT York 19 5 / 13
What is a gauge theory? “Ordinary” field theory: Gauge theory: Set/Space of fields Grpd/Stack of fields Φ ′ A ′ g ′′ g ′ g Φ ′′ A ′′ Φ A Ex: Groupoid of principal G -bundles with connection on U ∼ = R m A ∈ Ω 1 ( U, g ) Obj: BG con ( U ) = g ∈ C ∞ ( U,G ) � A ⊳ g = g − 1 Ag + g − 1 d g Mor: A Invariant information: = Ω 1 ( U, g ) /C ∞ ( U, G ) (“gauge orbit space”) � � • π 0 BG con ( U ) = { g ∈ C ∞ ( U, G ) : A = A ⊳ g } (stabilizers/“loops”) � � • π 1 BG con ( U ) , A Alexander Schenkel ∞ AQFT York 19 5 / 13
What is a gauge theory? “Ordinary” field theory: Gauge theory: Set/Space of fields Grpd/Stack of fields Φ ′ A ′ g ′′ g ′ g Φ ′′ A ′′ Φ A Ex: Groupoid of principal G -bundles with connection on U ∼ = R m A ∈ Ω 1 ( U, g ) Obj: BG con ( U ) = g ∈ C ∞ ( U,G ) � A ⊳ g = g − 1 Ag + g − 1 d g Mor: A Invariant information: = Ω 1 ( U, g ) /C ∞ ( U, G ) (“gauge orbit space”) � � • π 0 BG con ( U ) = { g ∈ C ∞ ( U, G ) : A = A ⊳ g } (stabilizers/“loops”) � � • π 1 BG con ( U ) , A ! Grpd is a 2 -category (or model category) with weak equivalences the categorical equivalences ⇒ need for higher (or derived) functors! Alexander Schenkel ∞ AQFT York 19 5 / 13
Why are these higher structures important? 1. π 1 encodes essential information of the gauge theory: Alexander Schenkel ∞ AQFT York 19 6 / 13
Why are these higher structures important? 1. π 1 encodes essential information of the gauge theory: Consider structure group G = U (1) or R . Then � � ∼ � � ∼ = Ω 1 ( U ) / dΩ 0 ( U ) π 0 BG con ( U ) , π 1 BG con ( U ) , A = G � �� � � �� � sees G doesn’t see G Alexander Schenkel ∞ AQFT York 19 6 / 13
Why are these higher structures important? 1. π 1 encodes essential information of the gauge theory: Consider structure group G = U (1) or R . Then � � ∼ � � ∼ = Ω 1 ( U ) / dΩ 0 ( U ) π 0 BG con ( U ) , π 1 BG con ( U ) , A = G � �� � � �� � sees G doesn’t see G 2. Higher structures are crucial for descent: Alexander Schenkel ∞ AQFT York 19 6 / 13
� � �� ��� Why are these higher structures important? 1. π 1 encodes essential information of the gauge theory: Consider structure group G = U (1) or R . Then � � ∼ � � ∼ = Ω 1 ( U ) / dΩ 0 ( U ) π 0 BG con ( U ) , π 1 BG con ( U ) , A = G � �� � � �� � sees G doesn’t see G 2. Higher structures are crucial for descent: Let M be manifold with good open cover { U i ⊆ M } . Then � � � �� � � holim i BG con ( U i ) ij BG con ( U ij ) ijk BG con ( U ijk ) � · · · is the groupoid of all principal G -bundles with connection on M Alexander Schenkel ∞ AQFT York 19 6 / 13
� � �� ��� Why are these higher structures important? 1. π 1 encodes essential information of the gauge theory: Consider structure group G = U (1) or R . Then � � ∼ � � ∼ = Ω 1 ( U ) / dΩ 0 ( U ) π 0 BG con ( U ) , π 1 BG con ( U ) , A = G � �� � � �� � sees G doesn’t see G 2. Higher structures are crucial for descent: Let M be manifold with good open cover { U i ⊆ M } . Then � � � �� � � holim i BG con ( U i ) ij BG con ( U ij ) ijk BG con ( U ijk ) � · · · is the groupoid of all principal G -bundles with connection on M 3. π 1 detects “fake” gauge symmetries: Alexander Schenkel ∞ AQFT York 19 6 / 13
� �� � ��� Why are these higher structures important? 1. π 1 encodes essential information of the gauge theory: Consider structure group G = U (1) or R . Then � � ∼ � � ∼ = Ω 1 ( U ) / dΩ 0 ( U ) π 0 BG con ( U ) , π 1 BG con ( U ) , A = G � �� � � �� � sees G doesn’t see G 2. Higher structures are crucial for descent: Let M be manifold with good open cover { U i ⊆ M } . Then � � � �� � � holim i BG con ( U i ) ij BG con ( U ij ) ijk BG con ( U ijk ) � · · · is the groupoid of all principal G -bundles with connection on M 3. π 1 detects “fake” gauge symmetries: Let M be manifold and consider groupoid (Φ 1 , Φ 2 ) ∈ C ∞ ( M ) × C ∞ ( M ) Obj: P ( M ) = ǫ ∈ C ∞ ( M ) � (Φ 1 + ǫ, Φ 2 + ǫ ) Mor: (Φ 1 , Φ 2 ) Alexander Schenkel ∞ AQFT York 19 6 / 13
��� � �� � Why are these higher structures important? 1. π 1 encodes essential information of the gauge theory: Consider structure group G = U (1) or R . Then � � ∼ � � ∼ = Ω 1 ( U ) / dΩ 0 ( U ) π 0 BG con ( U ) , π 1 BG con ( U ) , A = G � �� � � �� � sees G doesn’t see G 2. Higher structures are crucial for descent: Let M be manifold with good open cover { U i ⊆ M } . Then � � � �� � � holim i BG con ( U i ) ij BG con ( U ij ) ijk BG con ( U ijk ) � · · · is the groupoid of all principal G -bundles with connection on M 3. π 1 detects “fake” gauge symmetries: Let M be manifold and consider groupoid (Φ 1 , Φ 2 ) ∈ C ∞ ( M ) × C ∞ ( M ) Obj: P ( M ) = ǫ ∈ C ∞ ( M ) � (Φ 1 + ǫ, Φ 2 + ǫ ) Mor: (Φ 1 , Φ 2 ) Because all π 1 ’s are trivial, this is a “fake” gauge symmetry. Alexander Schenkel ∞ AQFT York 19 6 / 13
��� � �� � Why are these higher structures important? 1. π 1 encodes essential information of the gauge theory: Consider structure group G = U (1) or R . Then � � ∼ � � ∼ = Ω 1 ( U ) / dΩ 0 ( U ) π 0 BG con ( U ) , π 1 BG con ( U ) , A = G � �� � � �� � sees G doesn’t see G 2. Higher structures are crucial for descent: Let M be manifold with good open cover { U i ⊆ M } . Then � � � �� � � holim i BG con ( U i ) ij BG con ( U ij ) ijk BG con ( U ijk ) � · · · is the groupoid of all principal G -bundles with connection on M 3. π 1 detects “fake” gauge symmetries: Let M be manifold and consider groupoid (Φ 1 , Φ 2 ) ∈ C ∞ ( M ) × C ∞ ( M ) Obj: P ( M ) = ǫ ∈ C ∞ ( M ) � (Φ 1 + ǫ, Φ 2 + ǫ ) Mor: (Φ 1 , Φ 2 ) Because all π 1 ’s are trivial, this is a “fake” gauge symmetry. Indeed, there is an equivalence P ( M ) → C ∞ ( M ) , (Φ 1 , Φ 2 ) �→ Φ 1 − Φ 2 to the scalar field. Alexander Schenkel ∞ AQFT York 19 6 / 13
Smooth cochain algebras on stacks ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks Alexander Schenkel ∞ AQFT York 19 7 / 13
Smooth cochain algebras on stacks ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent Alexander Schenkel ∞ AQFT York 19 7 / 13
Smooth cochain algebras on stacks X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent Alexander Schenkel ∞ AQFT York 19 7 / 13
Smooth cochain algebras on stacks R 0 X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent Alexander Schenkel ∞ AQFT York 19 7 / 13
Smooth cochain algebras on stacks R 0 X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks R 1 ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent Alexander Schenkel ∞ AQFT York 19 7 / 13
Smooth cochain algebras on stacks R 0 X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks R 1 ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent R 2 Alexander Schenkel ∞ AQFT York 19 7 / 13
Smooth cochain algebras on stacks R 0 X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks R 1 ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent R 2 ⋄ (A)QFT needs “observable algebras”, but what are functions on stacks? Alexander Schenkel ∞ AQFT York 19 7 / 13
� Smooth cochain algebras on stacks R 0 X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks R 1 ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent R 2 ⋄ (A)QFT needs “observable algebras”, but what are functions on stacks? ⋄ Smooth normalized cochains: N ∗∞ ( − , K ) � PSh ( Cart , Ch K ) � Ch op Stacks K Map ∞ ( − , K ) N ∗ ( − , K ) Alexander Schenkel ∞ AQFT York 19 7 / 13
� Smooth cochain algebras on stacks R 0 X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks R 1 ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent R 2 ⋄ (A)QFT needs “observable algebras”, but what are functions on stacks? ⋄ Smooth normalized cochains: N ∗∞ ( − , K ) � PSh ( Cart , Ch K ) � Ch op Stacks K Map ∞ ( − , K ) N ∗ ( − , K ) (i) N ∗∞ ( − , K ) is left Quillen functor, i.e. left derived functor L N ∗∞ ( − , K ) exists Prop: Alexander Schenkel ∞ AQFT York 19 7 / 13
� Smooth cochain algebras on stacks R 0 X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks R 1 ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent R 2 ⋄ (A)QFT needs “observable algebras”, but what are functions on stacks? ⋄ Smooth normalized cochains: N ∗∞ ( − , K ) � PSh ( Cart , Ch K ) � Ch op Stacks K Map ∞ ( − , K ) N ∗ ( − , K ) (i) N ∗∞ ( − , K ) is left Quillen functor, i.e. left derived functor L N ∗∞ ( − , K ) exists Prop: (ii) L N ∗∞ ( − , K ) : Stacks → Alg E ∞ ( Ch K ) op takes values in E ∞ -algebras Alexander Schenkel ∞ AQFT York 19 7 / 13
� Smooth cochain algebras on stacks R 0 X ⋄ To study geometry of gauge fields, one needs “smooth groupoids” a.k.a. stacks R 1 ⋄ A stack is a presheaf X : Cart op → Grpd satisfying homotopical descent R 2 ⋄ (A)QFT needs “observable algebras”, but what are functions on stacks? ⋄ Smooth normalized cochains: N ∗∞ ( − , K ) � PSh ( Cart , Ch K ) � Ch op Stacks K Map ∞ ( − , K ) N ∗ ( − , K ) (i) N ∗∞ ( − , K ) is left Quillen functor, i.e. left derived functor L N ∗∞ ( − , K ) exists Prop: (ii) L N ∗∞ ( − , K ) : Stacks → Alg E ∞ ( Ch K ) op takes values in E ∞ -algebras ! Main observation: Classical observables in a gauge theory are described by dg-algebras that are only homotopy-coherently commutative! Alexander Schenkel ∞ AQFT York 19 7 / 13
Higher structures in AQFT Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! ⋄ But what about homotopy coherent algebraic structures (e.g. E ∞ -algebras)? Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! ⋄ But what about homotopy coherent algebraic structures (e.g. E ∞ -algebras)? Def: A Ch K -valued homotopy AQFT on C is an algebra over any Σ -cofibrant ∼ resolution O C , ∞ ։ O C of the AQFT dg-operad O C ∈ Op ( Ch K ) . Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! ⋄ But what about homotopy coherent algebraic structures (e.g. E ∞ -algebras)? Def: A Ch K -valued homotopy AQFT on C is an algebra over any Σ -cofibrant ∼ resolution O C , ∞ ։ O C of the AQFT dg-operad O C ∈ Op ( Ch K ) . AQFT ∞ ( C ) := Alg O C , ∞ ( Ch K ) denotes category of homotopy AQFTs. Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! ⋄ But what about homotopy coherent algebraic structures (e.g. E ∞ -algebras)? Def: A Ch K -valued homotopy AQFT on C is an algebra over any Σ -cofibrant ∼ resolution O C , ∞ ։ O C of the AQFT dg-operad O C ∈ Op ( Ch K ) . AQFT ∞ ( C ) := Alg O C , ∞ ( Ch K ) denotes category of homotopy AQFTs. Prop: (i) AQFT ∞ ( C ) is a model category with weak equivalences the natural quasi-isomorphisms Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! ⋄ But what about homotopy coherent algebraic structures (e.g. E ∞ -algebras)? Def: A Ch K -valued homotopy AQFT on C is an algebra over any Σ -cofibrant ∼ resolution O C , ∞ ։ O C of the AQFT dg-operad O C ∈ Op ( Ch K ) . AQFT ∞ ( C ) := Alg O C , ∞ ( Ch K ) denotes category of homotopy AQFTs. Prop: (i) AQFT ∞ ( C ) is a model category with weak equivalences the natural quasi-isomorphisms (ii) AQFT ∞ ( C ) does not depend on the choice of resolution (up to zig-zags of Quillen equivalences) Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! ⋄ But what about homotopy coherent algebraic structures (e.g. E ∞ -algebras)? Def: A Ch K -valued homotopy AQFT on C is an algebra over any Σ -cofibrant ∼ resolution O C , ∞ ։ O C of the AQFT dg-operad O C ∈ Op ( Ch K ) . AQFT ∞ ( C ) := Alg O C , ∞ ( Ch K ) denotes category of homotopy AQFTs. Prop: (i) AQFT ∞ ( C ) is a model category with weak equivalences the natural quasi-isomorphisms (ii) AQFT ∞ ( C ) does not depend on the choice of resolution (up to zig-zags of Quillen equivalences) ∼ (iii) If char K = 0 , then id : O C ։ O C is Σ -cofibrant resolution ⇒ all homotopy AQFTs in char K = 0 (i.e. in physics) can be strictified Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! ⋄ But what about homotopy coherent algebraic structures (e.g. E ∞ -algebras)? Def: A Ch K -valued homotopy AQFT on C is an algebra over any Σ -cofibrant ∼ resolution O C , ∞ ։ O C of the AQFT dg-operad O C ∈ Op ( Ch K ) . AQFT ∞ ( C ) := Alg O C , ∞ ( Ch K ) denotes category of homotopy AQFTs. Prop: (i) AQFT ∞ ( C ) is a model category with weak equivalences the natural quasi-isomorphisms (ii) AQFT ∞ ( C ) does not depend on the choice of resolution (up to zig-zags of Quillen equivalences) ∼ (iii) If char K = 0 , then id : O C ։ O C is Σ -cofibrant resolution ⇒ all homotopy AQFTs in char K = 0 (i.e. in physics) can be strictified ∼ ։ O C ⊗ Com ∼ Ex: Component-wise tensor product O C ⊗ E ∞ = O C with the Barratt-Eccles operad defines a Σ -cofibrant resolution. Alexander Schenkel ∞ AQFT York 19 8 / 13
Homotopy AQFTs: Definition and basic properties ⋄ Recall AQFT ( C , T ) = Alg O C ( T ) requires choice of target category T ⋄ Take T = Ch K to include dg-algebras of observables of a gauge theory! ⋄ But what about homotopy coherent algebraic structures (e.g. E ∞ -algebras)? Def: A Ch K -valued homotopy AQFT on C is an algebra over any Σ -cofibrant ∼ resolution O C , ∞ ։ O C of the AQFT dg-operad O C ∈ Op ( Ch K ) . AQFT ∞ ( C ) := Alg O C , ∞ ( Ch K ) denotes category of homotopy AQFTs. Prop: (i) AQFT ∞ ( C ) is a model category with weak equivalences the natural quasi-isomorphisms (ii) AQFT ∞ ( C ) does not depend on the choice of resolution (up to zig-zags of Quillen equivalences) ∼ (iii) If char K = 0 , then id : O C ։ O C is Σ -cofibrant resolution ⇒ all homotopy AQFTs in char K = 0 (i.e. in physics) can be strictified ∼ ։ O C ⊗ Com ∼ Ex: Component-wise tensor product O C ⊗ E ∞ = O C with the Barratt-Eccles operad defines a Σ -cofibrant resolution. Smooth normalized cochain algebras on (a diagram X : C op → Stacks of) stacks leads to homotopy AQFTs of this type. Alexander Schenkel ∞ AQFT York 19 8 / 13
Example: Linear Yang-Mills as a homotopy AQFT ⋄ Linear gauge theory: (derived) stacks � chain complexes Ch K Alexander Schenkel ∞ AQFT York 19 9 / 13
Example: Linear Yang-Mills as a homotopy AQFT ⋄ Linear gauge theory: (derived) stacks � chain complexes Ch K ⋄ Yang-Mills with structure group R is defined on M ∈ Loc by Alexander Schenkel ∞ AQFT York 19 9 / 13
� Example: Linear Yang-Mills as a homotopy AQFT ⋄ Linear gauge theory: (derived) stacks � chain complexes Ch K ⋄ Yang-Mills with structure group R is defined on M ∈ Loc by (0) (1) � d � Ω 1 ( M ) Ω 0 ( M ) (1) Field complex F ( M ) = Alexander Schenkel ∞ AQFT York 19 9 / 13
� Example: Linear Yang-Mills as a homotopy AQFT ⋄ Linear gauge theory: (derived) stacks � chain complexes Ch K ⋄ Yang-Mills with structure group R is defined on M ∈ Loc by (0) (1) � d � Ω 1 ( M ) Ω 0 ( M ) (1) Field complex F ( M ) = (2) Action functional S ( A ) = 1 � M d A ∧ ∗ d A 2 Alexander Schenkel ∞ AQFT York 19 9 / 13
� � � � � Example: Linear Yang-Mills as a homotopy AQFT ⋄ Linear gauge theory: (derived) stacks � chain complexes Ch K ⋄ Yang-Mills with structure group R is defined on M ∈ Loc by (0) (1) � d � Ω 1 ( M ) Ω 0 ( M ) (1) Field complex F ( M ) = (2) Action functional S ( A ) = 1 � M d A ∧ ∗ d A 2 ⋄ Variation of action defines section of cotangent bundle 0 d Ω 1 ( M ) Ω 0 ( M ) 0 F ( M ) = 0 � (id ,δ d) � δ v S � id � T ∗ F ( M ) Ω 0 ( M ) Ω 1 ( M ) × Ω 1 ( M ) Ω 0 ( M ) − δπ 2 ι 1 d Alexander Schenkel ∞ AQFT York 19 9 / 13
� � � � � � � Example: Linear Yang-Mills as a homotopy AQFT ⋄ Linear gauge theory: (derived) stacks � chain complexes Ch K ⋄ Yang-Mills with structure group R is defined on M ∈ Loc by (0) (1) � d � Ω 1 ( M ) Ω 0 ( M ) (1) Field complex F ( M ) = (2) Action functional S ( A ) = 1 � M d A ∧ ∗ d A 2 ⋄ Variation of action defines section of cotangent bundle 0 d Ω 1 ( M ) Ω 0 ( M ) 0 F ( M ) = 0 � (id ,δ d) � δ v S � id � T ∗ F ( M ) Ω 0 ( M ) Ω 1 ( M ) × Ω 1 ( M ) Ω 0 ( M ) − δπ 2 ι 1 d � F ( M ) Def: The solution complex is defined as the (linear) Sol ( M ) h derived critical locus of the action S , i.e. the δ v S � T ∗ F ( M ) following homotopy pullback in Ch K F ( M ) 0 Alexander Schenkel ∞ AQFT York 19 9 / 13
� � � � � � � � � � Example: Linear Yang-Mills as a homotopy AQFT ⋄ Linear gauge theory: (derived) stacks � chain complexes Ch K ⋄ Yang-Mills with structure group R is defined on M ∈ Loc by (0) (1) � d � Ω 1 ( M ) Ω 0 ( M ) (1) Field complex F ( M ) = (2) Action functional S ( A ) = 1 � M d A ∧ ∗ d A 2 ⋄ Variation of action defines section of cotangent bundle 0 d Ω 1 ( M ) Ω 0 ( M ) 0 F ( M ) = 0 � (id ,δ d) � δ v S � id � T ∗ F ( M ) Ω 0 ( M ) Ω 1 ( M ) × Ω 1 ( M ) Ω 0 ( M ) − δπ 2 ι 1 d � F ( M ) Def: The solution complex is defined as the (linear) Sol ( M ) h derived critical locus of the action S , i.e. the δ v S � T ∗ F ( M ) following homotopy pullback in Ch K F ( M ) 0 � � ( − 2) ( − 1) (0) (1) δ δ d d Ω 0 ( M ) Ω 1 ( M ) Ω 1 ( M ) Ω 0 ( M ) Prop: Sol ( M ) = Alexander Schenkel ∞ AQFT York 19 9 / 13
� � � � � � � � � � Example: Linear Yang-Mills as a homotopy AQFT ⋄ Linear gauge theory: (derived) stacks � chain complexes Ch K ⋄ Yang-Mills with structure group R is defined on M ∈ Loc by (0) (1) � d � Ω 1 ( M ) Ω 0 ( M ) (1) Field complex F ( M ) = (2) Action functional S ( A ) = 1 � M d A ∧ ∗ d A 2 ⋄ Variation of action defines section of cotangent bundle 0 d Ω 1 ( M ) Ω 0 ( M ) F ( M ) 0 = 0 � (id ,δ d) � δ v S � id � T ∗ F ( M ) Ω 0 ( M ) Ω 1 ( M ) × Ω 1 ( M ) Ω 0 ( M ) − δπ 2 ι 1 d � F ( M ) Def: The solution complex is defined as the (linear) Sol ( M ) h derived critical locus of the action S , i.e. the δ v S � T ∗ F ( M ) following homotopy pullback in Ch K F ( M ) 0 � � C ‡ A ‡ A C δ δ d d Ω 0 ( M ) Ω 1 ( M ) Ω 1 ( M ) Ω 0 ( M ) Prop: Sol ( M ) = Rem: Interpretation of Sol ( M ) in terms of BRST/BV formalism from physics Alexander Schenkel ∞ AQFT York 19 9 / 13
Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: Alexander Schenkel ∞ AQFT York 19 10 / 13
� � � Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: ( − 1) (0) (1) (2) − δ − d � δ d � Ω 0 Ω 1 Ω 1 Ω 0 • Smooth dual L ( M ) = c ( M ) c ( M ) c ( M ) c ( M ) Alexander Schenkel ∞ AQFT York 19 10 / 13
� � � Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: ( − 1) (0) (1) (2) − δ − d � δ d � Ω 0 Ω 1 Ω 1 Ω 0 • Smooth dual L ( M ) = c ( M ) c ( M ) c ( M ) c ( M ) ⊆ • Canonical inclusion j : L ( M ) − → L pc / fc ( M ) − → Sol ( M )[1] Alexander Schenkel ∞ AQFT York 19 10 / 13
� � � Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: ( − 1) (0) (1) (2) − δ − d � δ d � Ω 0 Ω 1 Ω 1 Ω 0 • Smooth dual L ( M ) = c ( M ) c ( M ) c ( M ) c ( M ) ⊆ • Canonical inclusion j : L ( M ) − → L pc / fc ( M ) − → Sol ( M )[1] id ⊗ j ev • Shifted Poisson structure Υ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M )[1] − → R [1] Alexander Schenkel ∞ AQFT York 19 10 / 13
� � � � � � � � � � � � � � � � � � � � � � � � Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: ( − 1) (0) (1) (2) − δ − d � δ d � Ω 0 Ω 1 Ω 1 Ω 0 • Smooth dual L ( M ) = c ( M ) c ( M ) c ( M ) c ( M ) ⊆ • Canonical inclusion j : L ( M ) − → L pc / fc ( M ) − → Sol ( M )[1] id ⊗ j ev • Shifted Poisson structure Υ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M )[1] − → R [1] (i) ∃ (unique up to homotopy) contracting homotopy G ± for L pc / fc ( M ) , e.g. Thm: − δ − d 0 δ d 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 − G ± G ± − δ G ± 0 � d � � 0 0 id id id id 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 0 − δ δ d − d 0 Alexander Schenkel ∞ AQFT York 19 10 / 13
� � � � � � � � � � � � � � � � � � � � � � � � Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: ( − 1) (0) (1) (2) − δ − d � δ d � Ω 0 Ω 1 Ω 1 Ω 0 • Smooth dual L ( M ) = c ( M ) c ( M ) c ( M ) c ( M ) ⊆ • Canonical inclusion j : L ( M ) − → L pc / fc ( M ) − → Sol ( M )[1] id ⊗ j ev • Shifted Poisson structure Υ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M )[1] − → R [1] (i) ∃ (unique up to homotopy) contracting homotopy G ± for L pc / fc ( M ) , e.g. Thm: − δ − d 0 δ d 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 − G ± G ± − δ G ± 0 � d � � 0 0 id id id id 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 0 − δ δ d − d 0 (ii) j = ∂ G ± and Υ = ∂ ( something ) are exact Alexander Schenkel ∞ AQFT York 19 10 / 13
� � � � � � � � � � � � � � � � � � � � � � � � Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: ( − 1) (0) (1) (2) − δ − d � δ d � Ω 0 Ω 1 Ω 1 Ω 0 • Smooth dual L ( M ) = c ( M ) c ( M ) c ( M ) c ( M ) ⊆ • Canonical inclusion j : L ( M ) − → L pc / fc ( M ) − → Sol ( M )[1] id ⊗ j ev • Shifted Poisson structure Υ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M )[1] − → R [1] (i) ∃ (unique up to homotopy) contracting homotopy G ± for L pc / fc ( M ) , e.g. Thm: − δ − d 0 δ d 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 − G ± G ± − δ G ± 0 � d � � 0 0 id id id id 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 0 − δ δ d − d 0 (ii) j = ∂ G ± and Υ = ∂ ( something ) are exact (iii) Difference G := G + − G − defines unshifted Poisson structure id ⊗G ev τ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M ) − → R (unique up to homotopy τ + ∂ρ ) Alexander Schenkel ∞ AQFT York 19 10 / 13
� � � � � � � � � � � � � � � � � � � � � � � � Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: ( − 1) (0) (1) (2) − δ − d � δ d � Ω 0 Ω 1 Ω 1 Ω 0 • Smooth dual L ( M ) = c ( M ) c ( M ) c ( M ) c ( M ) ⊆ • Canonical inclusion j : L ( M ) − → L pc / fc ( M ) − → Sol ( M )[1] id ⊗ j ev • Shifted Poisson structure Υ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M )[1] − → R [1] (i) ∃ (unique up to homotopy) contracting homotopy G ± for L pc / fc ( M ) , e.g. Thm: − δ − d 0 δ d 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 − G ± G ± − δ G ± 0 � d � � 0 0 id id id id 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 0 − δ δ d − d 0 (ii) j = ∂ G ± and Υ = ∂ ( something ) are exact (iii) Difference G := G + − G − defines unshifted Poisson structure id ⊗G ev τ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M ) − → R (unique up to homotopy τ + ∂ρ ) (iv) Quantization CCR : PoCh R → Alg As ( Ch C ) preserves quasi-isomorphisms and homotopic Poisson structures, i.e. CCR ( V, τ + ∂ρ ) ≃ CCR ( V, τ ) Alexander Schenkel ∞ AQFT York 19 10 / 13
� � � � � � � � � � � � � � � � � � � � � � � � Example: Linear Yang-Mills as a homotopy AQFT II ⋄ Every derived critical locus carries a [1] -shifted Poisson structure, explicitly: ( − 1) (0) (1) (2) − δ − d � δ d � Ω 0 Ω 1 Ω 1 Ω 0 • Smooth dual L ( M ) = c ( M ) c ( M ) c ( M ) c ( M ) ⊆ • Canonical inclusion j : L ( M ) − → L pc / fc ( M ) − → Sol ( M )[1] id ⊗ j ev • Shifted Poisson structure Υ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M )[1] − → R [1] (i) ∃ (unique up to homotopy) contracting homotopy G ± for L pc / fc ( M ) , e.g. Thm: − δ − d 0 δ d 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 − G ± G ± − δ G ± 0 � d � � 0 0 id id id id 0 Ω 0 Ω 1 Ω 1 Ω 0 0 pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) pc / fc ( M ) 0 0 − δ δ d − d 0 (ii) j = ∂ G ± and Υ = ∂ ( something ) are exact (iii) Difference G := G + − G − defines unshifted Poisson structure id ⊗G ev τ : L ( M ) ⊗ L ( M ) − → L ( M ) ⊗ Sol ( M ) − → R (unique up to homotopy τ + ∂ρ ) (iv) Quantization CCR : PoCh R → Alg As ( Ch C ) preserves quasi-isomorphisms and homotopic Poisson structures, i.e. CCR ( V, τ + ∂ρ ) ≃ CCR ( V, τ ) (v) Loc ∋ M �→ A YM ( M ) := CCR ( L ( M ) , τ ) defines a homotopy AQFT Alexander Schenkel ∞ AQFT York 19 10 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) Alexander Schenkel ∞ AQFT York 19 11 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) ⋄ Homotopical descent condition: A ∈ AQFT ∞ ( Loc ) is homotopy j -local iff ∼ derived counit � ǫ A : L ext res A − → A is weak equivalence Alexander Schenkel ∞ AQFT York 19 11 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) ⋄ Homotopical descent condition: A ∈ AQFT ∞ ( Loc ) is homotopy j -local iff ∼ derived counit � ǫ A : L ext res A − → A is weak equivalence ⋄ Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills? Alexander Schenkel ∞ AQFT York 19 11 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) ⋄ Homotopical descent condition: A ∈ AQFT ∞ ( Loc ) is homotopy j -local iff ∼ derived counit � ǫ A : L ext res A − → A is weak equivalence ⋄ Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills? � Technically super (really, super!) complicated! Needs better technology for dealing with derived adjunctions, maybe ∞ -categories ` a la Joyal/Lurie? Alexander Schenkel ∞ AQFT York 19 11 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) ⋄ Homotopical descent condition: A ∈ AQFT ∞ ( Loc ) is homotopy j -local iff ∼ derived counit � ǫ A : L ext res A − → A is weak equivalence ⋄ Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills? � Technically super (really, super!) complicated! Needs better technology for dealing with derived adjunctions, maybe ∞ -categories ` a la Joyal/Lurie? � We can prove that simple (topological) toy-models of non-quantized gauge theories have this property! Alexander Schenkel ∞ AQFT York 19 11 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) ⋄ Homotopical descent condition: A ∈ AQFT ∞ ( Loc ) is homotopy j -local iff ∼ derived counit � ǫ A : L ext res A − → A is weak equivalence ⋄ Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills? � Technically super (really, super!) complicated! Needs better technology for dealing with derived adjunctions, maybe ∞ -categories ` a la Joyal/Lurie? � We can prove that simple (topological) toy-models of non-quantized gauge theories have this property! But already this requires heavy machinery, given by the following theorem based on Lurie’s Seifert-van Kampen Theorem Alexander Schenkel ∞ AQFT York 19 11 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) ⋄ Homotopical descent condition: A ∈ AQFT ∞ ( Loc ) is homotopy j -local iff ∼ derived counit � ǫ A : L ext res A − → A is weak equivalence ⋄ Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills? � Technically super (really, super!) complicated! Needs better technology for dealing with derived adjunctions, maybe ∞ -categories ` a la Joyal/Lurie? � We can prove that simple (topological) toy-models of non-quantized gauge theories have this property! But already this requires heavy machinery, given by the following theorem based on Lurie’s Seifert-van Kampen Theorem Thm: Let Man m be category of oriented m -manifolds and j : Disk m → Man m the full subcategory of m -disks. Alexander Schenkel ∞ AQFT York 19 11 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) ⋄ Homotopical descent condition: A ∈ AQFT ∞ ( Loc ) is homotopy j -local iff ∼ derived counit � ǫ A : L ext res A − → A is weak equivalence ⋄ Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills? � Technically super (really, super!) complicated! Needs better technology for dealing with derived adjunctions, maybe ∞ -categories ` a la Joyal/Lurie? � We can prove that simple (topological) toy-models of non-quantized gauge theories have this property! But already this requires heavy machinery, given by the following theorem based on Lurie’s Seifert-van Kampen Theorem Thm: Let Man m be category of oriented m -manifolds and j : Disk m → Man m the full subcategory of m -disks. Let A : Disk m → Alg E ∞ ( Ch K ) be functor that is weakly equivalent to a constant functor with value A ∈ Alg E ∞ ( Ch K ) . Alexander Schenkel ∞ AQFT York 19 11 / 13
� Towards descent in homotopy AQFT ⋄ The inclusion Loc ⋄ ֒ → Loc of “diamonds” defines Quillen adjunction � AQFT ∞ ( Loc ) : res ext : AQFT ∞ ( Loc ⋄ ) ⋄ Homotopical descent condition: A ∈ AQFT ∞ ( Loc ) is homotopy j -local iff ∼ derived counit � ǫ A : L ext res A − → A is weak equivalence ⋄ Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills? � Technically super (really, super!) complicated! Needs better technology for dealing with derived adjunctions, maybe ∞ -categories ` a la Joyal/Lurie? � We can prove that simple (topological) toy-models of non-quantized gauge theories have this property! But already this requires heavy machinery, given by the following theorem based on Lurie’s Seifert-van Kampen Theorem Thm: Let Man m be category of oriented m -manifolds and j : Disk m → Man m the full subcategory of m -disks. Let A : Disk m → Alg E ∞ ( Ch K ) be functor that is weakly equivalent to a constant functor with value A ∈ Alg E ∞ ( Ch K ) . L Then the derived extension L j ! A ( M ) = Sing( M ) ⊗ A at M ∈ Man m is given by derived higher Hochschild chains on Sing( M ) with values in A . Alexander Schenkel ∞ AQFT York 19 11 / 13
� � Toy-model: R -Chern-Simons theory on 2 -surfaces ⋄ Linear observables for flat R -connections on oriented 2 -manifold M are � � ( − 1) (0) (1) d d L ( M ) = Ω • Ω 2 Ω 1 Ω 0 c ( M )[1] = c ( M ) c ( M ) c ( M ) Alexander Schenkel ∞ AQFT York 19 12 / 13
� � Toy-model: R -Chern-Simons theory on 2 -surfaces ⋄ Linear observables for flat R -connections on oriented 2 -manifold M are � � ( − 1) (0) (1) d d L ( M ) = Ω • Ω 2 Ω 1 Ω 0 c ( M )[1] = c ( M ) c ( M ) c ( M ) � � max ) ∼ ⋄ Define A ∈ AQFT ∞ ( Man 2 = Fun Man 2 , Alg E ∞ ( Ch K ) by � � A ( M ) = E ∞ L ( M ) [No quantization here!] Alexander Schenkel ∞ AQFT York 19 12 / 13
� � Toy-model: R -Chern-Simons theory on 2 -surfaces ⋄ Linear observables for flat R -connections on oriented 2 -manifold M are � � ( − 1) (0) (1) d d L ( M ) = Ω • Ω 2 Ω 1 Ω 0 c ( M )[1] = c ( M ) c ( M ) c ( M ) � � max ) ∼ ⋄ Define A ∈ AQFT ∞ ( Man 2 = Fun Man 2 , Alg E ∞ ( Ch K ) by � � A ( M ) = E ∞ L ( M ) [No quantization here!] ⋄ Restriction j ∗ A to 2 -disks is weakly equivalent to constant functor with value � U : Ω • E ∞ ( R [ − 1]) because c ( U )[1] → R [ − 1] is quasi-iso, for all U ∈ Disk 2 Alexander Schenkel ∞ AQFT York 19 12 / 13
� � Toy-model: R -Chern-Simons theory on 2 -surfaces ⋄ Linear observables for flat R -connections on oriented 2 -manifold M are � � ( − 1) (0) (1) d d L ( M ) = Ω • Ω 2 Ω 1 Ω 0 c ( M )[1] = c ( M ) c ( M ) c ( M ) � � max ) ∼ ⋄ Define A ∈ AQFT ∞ ( Man 2 = Fun Man 2 , Alg E ∞ ( Ch K ) by � � A ( M ) = E ∞ L ( M ) [No quantization here!] ⋄ Restriction j ∗ A to 2 -disks is weakly equivalent to constant functor with value � U : Ω • E ∞ ( R [ − 1]) because c ( U )[1] → R [ − 1] is quasi-iso, for all U ∈ Disk 2 ⋄ Compute derived extension at M ∈ Man 2 : � � � � L ( L j ! j ∗ A )( M ) ≃ Sing( M ) ⊗ E ∞ R [ − 1] ≃ Sing( M ) ⊗ E ∞ R [ − 1] Alexander Schenkel ∞ AQFT York 19 12 / 13
� � Toy-model: R -Chern-Simons theory on 2 -surfaces ⋄ Linear observables for flat R -connections on oriented 2 -manifold M are � � ( − 1) (0) (1) d d L ( M ) = Ω • Ω 2 Ω 1 Ω 0 c ( M )[1] = c ( M ) c ( M ) c ( M ) � � max ) ∼ ⋄ Define A ∈ AQFT ∞ ( Man 2 = Fun Man 2 , Alg E ∞ ( Ch K ) by � � A ( M ) = E ∞ L ( M ) [No quantization here!] ⋄ Restriction j ∗ A to 2 -disks is weakly equivalent to constant functor with value � U : Ω • E ∞ ( R [ − 1]) because c ( U )[1] → R [ − 1] is quasi-iso, for all U ∈ Disk 2 ⋄ Compute derived extension at M ∈ Man 2 : � � � � L ( L j ! j ∗ A )( M ) ≃ Sing( M ) ⊗ E ∞ R [ − 1] ≃ Sing( M ) ⊗ E ∞ R [ − 1] � � [Fresse] ≃ N ∗ (Sing( M ) , R ) ⊗ R [ − 1] E ∞ Alexander Schenkel ∞ AQFT York 19 12 / 13
� � Toy-model: R -Chern-Simons theory on 2 -surfaces ⋄ Linear observables for flat R -connections on oriented 2 -manifold M are � � ( − 1) (0) (1) d d L ( M ) = Ω • Ω 2 Ω 1 Ω 0 c ( M )[1] = c ( M ) c ( M ) c ( M ) � � max ) ∼ ⋄ Define A ∈ AQFT ∞ ( Man 2 = Fun Man 2 , Alg E ∞ ( Ch K ) by � � A ( M ) = E ∞ L ( M ) [No quantization here!] ⋄ Restriction j ∗ A to 2 -disks is weakly equivalent to constant functor with value � U : Ω • E ∞ ( R [ − 1]) because c ( U )[1] → R [ − 1] is quasi-iso, for all U ∈ Disk 2 ⋄ Compute derived extension at M ∈ Man 2 : � � � � L ( L j ! j ∗ A )( M ) ≃ Sing( M ) ⊗ E ∞ R [ − 1] ≃ Sing( M ) ⊗ E ∞ R [ − 1] � � [Fresse] ≃ N ∗ (Sing( M ) , R ) ⊗ R [ − 1] E ∞ � � [de Rham] Ω • ≃ c ( M )[1] = A ( M ) E ∞ Alexander Schenkel ∞ AQFT York 19 12 / 13
� � Toy-model: R -Chern-Simons theory on 2 -surfaces ⋄ Linear observables for flat R -connections on oriented 2 -manifold M are � � ( − 1) (0) (1) d d L ( M ) = Ω • Ω 2 Ω 1 Ω 0 c ( M )[1] = c ( M ) c ( M ) c ( M ) � � max ) ∼ ⋄ Define A ∈ AQFT ∞ ( Man 2 = Fun Man 2 , Alg E ∞ ( Ch K ) by � � A ( M ) = E ∞ L ( M ) [No quantization here!] ⋄ Restriction j ∗ A to 2 -disks is weakly equivalent to constant functor with value � U : Ω • E ∞ ( R [ − 1]) because c ( U )[1] → R [ − 1] is quasi-iso, for all U ∈ Disk 2 ⋄ Compute derived extension at M ∈ Man 2 : � � � � L ( L j ! j ∗ A )( M ) ≃ Sing( M ) ⊗ E ∞ R [ − 1] ≃ Sing( M ) ⊗ E ∞ R [ − 1] � � [Fresse] ≃ N ∗ (Sing( M ) , R ) ⊗ R [ − 1] E ∞ � � [de Rham] Ω • ≃ c ( M )[1] = A ( M ) E ∞ max → Man 2 max ⇒ This toy-model is homotopy j -local for j : Disk 2 Alexander Schenkel ∞ AQFT York 19 12 / 13
Conclusions and outlook ⋄ Describing gauge theories requires higher categorical structures, in particular stacks and derived stacks Alexander Schenkel ∞ AQFT York 19 13 / 13
Conclusions and outlook ⋄ Describing gauge theories requires higher categorical structures, in particular stacks and derived stacks ⋄ Shadows of such structures are well-known in physics under the name BRST/BV formalism Alexander Schenkel ∞ AQFT York 19 13 / 13
Conclusions and outlook ⋄ Describing gauge theories requires higher categorical structures, in particular stacks and derived stacks ⋄ Shadows of such structures are well-known in physics under the name BRST/BV formalism ⋄ The homotopical AQFT program that I initiated with M. Benini aims to introduce the relevant higher algebraic structures into AQFT Alexander Schenkel ∞ AQFT York 19 13 / 13
Recommend
More recommend