high z galaxy evolution vdi and mostly minor mergers
play

High!z Galaxy Evolution: VDI and (mostly minor) Mergers Avishai - PowerPoint PPT Presentation

High!z Galaxy Evolution: VDI and (mostly minor) Mergers Avishai Dekel The Hebrew University of Jerusalem UCSC, August 2012 UCSC, August 2012 Outline: in!situ (VDI) and ex!situ (mergers) 1. Cold streams: smooth and clumpy 2. Disk!clumps:


  1. High!z Galaxy Evolution: VDI and (mostly minor) Mergers Avishai Dekel The Hebrew University of Jerusalem UCSC, August 2012 UCSC, August 2012

  2. Outline: in!situ (VDI) and ex!situ (mergers) 1. Cold streams: smooth and clumpy 2. Disk!clumps: in!situ and ex!situ 2. Disk!clumps: in!situ and ex!situ 3. Blue Nuggets and BH by wet inflows 4. Two!zone kinematics

  3. AMR Cosmological Simulations Zoom!in individual galaxies: 30 sims ~50pc resolution HART (Kravtsov, Klypin) : Ceverino, Dekel, Primack, … RAMSES (Teyssier): Tweed, Dekel, Bournaud (isolated, ~1pc res) Bournaud (isolated, ~1pc res) HUJI: Daniel Ceverino, Tobias Goerdt, Loren Hoffman, Nir Mandelker, Dylan Tweed, Joanna Woo, Adi Zolotov UCSC: Michele Fumagalli, John Forbes, Chris Moody, Mark Mozena, Loren Porter, the CANDELS team

  4. 1. Cold Streams: Smooth and Clumpy Dekel et al. 2009 Dekel et al. 2009 Fumagalli et al. 2011 Danovich, Dekel, Hahn, Teyssier 2012 Tweed, Ceverino, Goerdt, Mandelker…

  5. Cosmic!web Streams feed galaxies: mergers and a smoother component AMR RAMSES Teyssier, Dekel box 300 kpc res 30 pc z = 5.0 to 2.5

  6. Stream Clumpiness ! Mergers Dekel, Teyssier et al 09; MareNostrum RAMSES sims 1kpc res Mass input to galaxies (all along streams) ! Major mergers >1:3 <10% ! Major+minor mergers >1:10 ~33% ! Miniminors and smooth flows ~67% M=10 12 M ʘ z=2.5

  7. Streams Break Up ! the “Messy” Region Ceverino, Dekel, Bournaud, Primack ART 35!70pc resolution streams disk interaction region Higher resolution reveals smaller clumps: ! Gravitating clumps with DM halos – merging galaxies ! Baryonic clumps – hydro and thermal instabilities (?)

  8. Supersonic cold stream in a hot medium (2D) Burkert, Ntormousi, Forbes, Dekel, Birnboim…

  9. Supersonic cold stream in a hot medium (2D) Burkert, Ntormousi, Forbes, Dekel, Birnboim…

  10. Inflows & Outflows Tweed, Dekel, Teyssier RAMSES 70!pc resolution Outflows find their way out through the dilute medium no noticeable effect on the dense cold rapid inflows no noticeable effect on the dense cold rapid inflows dilute high Z hot Gas density Temperature Metallicity

  11. Inflows and Outflows House, Tweed, Ceverino et al. outflow η ~0.7 in!streaming ~1.7SFR

  12. Baryon Penetration to the Disk: ~50% Toy models versus simulations: Dekel, Zolotov, Tweed, Cacciato, Ceverino, Primack HART 30 simulations 35!70pc res � 0 . 03 − 1 ( 1 ) 5 / 2 = + M Gyr M z 0 . 8 ( ) − − z z = M M e 0 R vir 0 0.1 R vir

  13. Steady State: SFR ~ accretion rate into the disk � � � = − M M M gas gas, acc sfr M gas � = M sfr sfr τ τ sfr � � � 0 ≈ ≈ M M M sfr gas, acc gas But gas accumulates in disks at earlier times and in smaller masses

  14. In!situ vs Ex!situ Star Formation Tweed, Zolotov, … ex!situ in disk in bulge

  15. 2. Disk!clumps: in!situ (VDI) and ex!situ (mergers) Ceverino et al 2010, 2011 Ceverino et al 2010, 2011 Mandelker, Tweed, … Mozena, Moody, …

  16. Violent Disk Instability (VDI) Noguchi 99 σ � High gas density → disk unstable 1 ∝ G ≤ Q Immeli et al. 04 Σ Giant clumps and transient features: Bournaud, Elmegreen, Σ G ∝ R Elmegreen 06, 08 processes on dynamical timescales clump 2 � In cosmology: Dekel, Sari, Ceverino 09 Agertz et al. 09 Agertz et al. 09 Ceverino, Dekel, Bournaud 10 Ceverino et al. 11 Cacciato et al. 11 5 kpc Krumholz, Forbes et al. 12 Self!regulated at Q~ ~1 by torques → high σ/V~ ~1 1/ /4 4 Torques induce inflow → formation of a compact bulge and BH Cosmological steady state: disk draining and replenishment, bulge ~ disk Star formation and feedback in clumps

  17. Clumpy Disk Ceverino, Dekel et al. 10 kpc z=4!2.1

  18. Clumpy Disk Ceverino, Dekel et al. 10 kpc z=2.4!2.1

  19. Stellar images of z~2 simulated disks “observed” with HST bands and PSF Mozena, Moody, Mendelker, Ceverino, et al. � � CANDELS � B Needed: a new morphological classification scheme for Needed: a new morphological classification scheme for Morphological classification Morphological classification high!z galaxies, emphasizing the in!situ clumpy disks H gas Hα

  20. Disk Clump Classification Mandelker et al. 2012 bulge – off!center >0.9 2 per galaxy compact, round – diffuse, elongated 90% of mass in!situ ! ex!situ # 70% 30% mass 45% 55% SFR 75% 25% rotating ! non!rotating 2/3 1/3 gas

  21. Bulge mass ~ Disk mass young stars young stars gas gas 10 kpc stars dark matter

  22. Gradients of clump properties ex!situ in!situ ! in!situ vs ex!situ ! migrating vs disrupting

  23. Observational indications for clump survival? Forster Schreiber et al. 11 R e MD41 MD41 BX482 BX482 Guo et al 11

  24. 3. Blue Nuggets and BH by Wet Inflow: VDI and Mergers Dekel, Sari, Ceverino 2009 Ceverino, Dekel, Bouraud 2010 Bournaud, Dekel et al. 2011 Bournaud, Dekel et al. 2011 Cacciato, Dekel, Genel 2011 Krumholz, Forbes, Burkert 2011 Spheroid: Ceverino, Cacciato, Hoffman, Zolotov, Tweed, …

  25. Violent Disk Instability ↔ Inflow to Center σ σ � σ M Self!regulated Toomre instability − 1 1 cold ≡ δ ≈ ≈ ≈ δ ≈ Q Σ M V V tot 1. Torques between perturbations drive AM out and mass in (e.g. clump migration) Gammie 01; Dekel, Sari, Ceverino 09 2. Inflow down the potential gradient provides the energy for driving σ to Q~1 …..and it compensates for dissipative losses Krumholz, Burkert 10; Cacciato, Dekel 11 2 2 M σ σ M 2 − ≈ γ t δ t � 2 ≈ M V inf inf dyn γ t dyn � 25 1 ( 1 ) 3 / 2 2 1 ≈ − + δ γ − M M yr M z clumpy inflow cold , 10 . 5 3 0 . 2 Θ gas disk Inflow of gas (and stars), not limited to clump migration compact stellar bulge

  26. Disk!instability!driven Inflow in Cosmological Simulations Cacciato et al. � 1 3 / 2 2 1 25 − ( 1 ) ( / ) − ≈ + σ V γ M M yr M z inflow Θ disk , 11 3 0 . 2

  27. DVI!driven Inflow in simulations Cacciato et al � 1 M 2 inf ≈ δ 2 γ t M cold dyn γ =1 σ M 2 cold ≡ δ ≈ M V tot

  28. VDI wet inflow if t inflow << t sfr → blue nugget Dekel & Burkert σ M 2 Self!regulated Toomre instability at Q ~ 1 cold ≡ δ ≈ M V tot 2 2 ≈ γ t δ − t t Σ inf dyn 2 ( 2 ) − 1 inf ≈ γ ε δ < g δ = t 1 − Σ + Σ + Σ ≈ ε t t sfr g ∗ dm sfr dyn Runaway: wet inflow → Σ g up → t inf /t sfr down → wetter inflow Runaway: wet inflow → Σ g up → t inf /t sfr down → wetter inflow Expect VDI!driven blue nuggets: ! at high z, where f g is high ! for low λ , where R g is low Quenching of blue to red nuggets by: ! gas consumption ! stellar feedback ! AGN feedback

  29. Blue Nuggets from Wet Inflow Ceverino et al 4 4 5 Σ *,eff M � kpc !2 Szomoru, Franx, van Dokkum 2011

  30. Classical Bulges from Wet Inflow z= 8 6 4 3 2 1.5 1 Ceverino et al

  31. Observations: Blue Nuggets – Red Nuggets log Σ e RN Kauffmann log M s log M s et al. et al. BN BN Fang et al., Cheung et al. diffuse → compact → quench downsizing of quenching RN BN Barro et al.

  32. Origin of Bulge: Stellar Birthplace Tweed, Zolotov, … 60!30% of the bulge stars form ex!situ (mergers) in the bulge → wet inflow in disk in bulge

  33. Bulge growth by Bulge mass [10 10 M � ] major B/D=2!4 mergers versus mergers? disk instability Tweed, Zolotov X m = fraction of mass added in mergers of 1:m X 3 X 3 Bulge mass [10 10 M � ] Bulge mass [10 10 M � ] minor mergers? disk instability? X 10 # clumps

  34. Bulge – Black Hole ! AGN Bournaud, Dekel, Teyssier, Cacciato, Daddi, Juneau, Shankar 11 Black hole growth by VDI!driven inflow in the disk 2% Sub!Eddington AGN, L x ~10 42!43 erg s !1 Bright episodes by clump coalescence Obscured by Σ gas ~10 23!24 cm !2 Similar to major mergers, but more abundant At z>6: VDI inflow allows Eddington accretion onto the BH By z~6 grow M BH ~10 9 M � from a seed ~5x10 4 M � at z~10

  35. AGN associated with Clumpy Disks Bournaud, Juneau, Le Floch, Mullaney, Daddi, Dekel, Duc, Elbaz, Salmi, Dickinson 11 z=0.5!1.0

  36. 4. Two!Zone Rotation in Ellipticals: Disk Instability and Minor Mergers Romanowsky, Dekel, Arnold, Hoffman, Ceverino, Brodie, Primack, … Brodie, Primack, …

  37. Outer vs Inner Rotation Binary major merger Disky elliptical Cosmological simulation, gas!rich 1:3 (NGC 3377; simulation (Burkert et al.) Romanowsky et al.) (Ceverino et al.)

  38. Outer vs Inner Rotation Hoffman et al.

  39. Origin of 2!zone Rotation Inner rotator by disk instability young Outer non!rotating “halo” by minor mergers in!situ birth old inner rotator ex!situ: ex!situ: old, old, minor mergers minor mergers ex!situ birth current radius [kpc] time [Gyr] outer non!rotator in!situ young birth radius [kpc] birth radius [kpc]

Recommend


More recommend