1 ELISA RESCONI (TUM) HIGH ENERGY MULTI-MESSENGER ASTRONOMY in collaboration with P. Padovani, P. Giommi, A. Turcati, S. Coenders, L. Caccianiga, and M. Petropoulou, B. Arsioli, Y.L. Chang.
2 ICRC 2017 E. RESCONI IN THIS TALK: “DISCLAIMER” ▸ No gravitational waves ▸ Focus on observations ▸ Focus on searches for HE neutrinos counterparts ▸ Focus on searches for UHECR counterparts ASTRO 🗤 PHYSICS
3 ICRC 2017 E. RESCONI WHERE ARE WE IN MM ASTRONOMY?
4 55 YEARS LATER AND 10 ORDER OF MAGNITUDE AFTER Chandra Deep Field South : Deepest X-ray Image Ever Reveals Black Hole Treasure Trove http://chandra.harvard.edu/photo/2017/cdfs/
5 ICRC 2017 E. RESCONI IN THIS TALK ▸ The Messengers ▸ The Observations ▸ The Scenarios ▸ The Searches ▸ Final remarks
6 ICRC 2017 E. RESCONI THE MESSENGERS (UHE) Cosmic Rays (HE) Neutrinos (Gamma) Photons ↳ Primaries ↳ Secondaries ↳ Secondaries ↳ Charged ↳ Not charged ↳ Not charged ↳ Composition ↳ Three flavours ↳ Interact, limited horizon ↳ Interact, limited ↳ Interact weakly, horizon nearly unlimited horizon Reconstruction: - ↳ excellent angular Reconstruction: Reconstruction: resolution - ↳ poor angular ↳ good angular - ↳ excellent energy resolution, bending resolution in shower, good in tracks resolution ↳ good energy resolution - ↳ poor energy resolution in tracks, good in showers
7 ICRC 2017 E. RESCONI THE OBSERVATIONS: 10 10 -10 12 E V SKY IN PHOTONS Third Catalog of Hard Fermi-LAT Sources (3FHL) 1556 sources e-Print: arXiv:1702.00664 Galactic Coordinates
8 ICRC 2017 E. RESCONI THE OBSERVATIONS: 10 12 -10 15 E V SKY IN NEUTRINOS IceCube Coll., Astrophys.J. 835 (2017) no.2, 151 0 sources +PoS 997
9 ICRC 2017 E. RESCONI THE OBSERVATIONS: 10 12 -10 15 E V SKY IN NEUTRINOS data from IceCube, PoS 998 credit to A. Turcati
10 ICRC 2017 E. RESCONI THE OBSERVATIONS: 10 18 -10 20 E V SKY IN COSMIC RAYS credit to S. Coenders data from TA, AUGER (2014 - 2015), 20 deg smearing
11 ICRC 2017 E. RESCONI THE OBSERVATIONS: HYBRID SPECTRAL ENERGY DISTRIBUTION A. Turcati, modified from L. Mohrmann, PhD Thesis (2015) preliminary
12 ICRC 2017 E. RESCONI THE OBSERVATIONS: HYBRID SPECTRAL ENERGY DISTRIBUTION A. Turcati, modified from L. Mohrmann, PhD Thesis (2015) ⁇ ⁇ preliminary
13 ICRC 2017 E. RESCONI THE OBSERVATIONS: HYBRID SPECTRAL ENERGY DISTRIBUTION A. Turcati, modified from L. Mohrmann, PhD Thesis (2015) blazars Y νγ = ? P. Giommi, P. Padovani, MNRAS (2015) Fermi -LAT Coll., PRL (2015)
14 ICRC 2017 E. RESCONI THE SCENARIOS Jet dominated AGN. The radiation output is mostly due to non-thermal 1- Blazars: radia.on from a rela.vis.c jet. ~ 10% of all AGN High energy peak Synchrotron peak ν F ν ✤ Flat Spectrum Radio Quasars : ν S LBL broad emission features (emission lines) in the optical spectrum LSP IBL HBL ✤ BL Lacs : no broad emission lines. ISP LBL/LSP , ν S < 10 14 Hz, HSP - IBL/ISP , 10 14 Hz< ν S <10 15 - HBL/HSP , ν S > 10 15 Hz - E em (FSRQ) < E em (BL Lacs) Spectral Energy Distribution (SED) [Padovani, Giommi, ’95] 10 14 10 15 ν (Hz)
15 ICRC 2017 E. RESCONI THE SCENARIOS 1- Blazars: in reality ~ 90 pages review submitted to The Astronomy and Astrophysics Review 2017 - To appear on ArXiv soon
16 ICRC 2017 E. RESCONI THE SCENARIOS 1- Blazars: γ ∝ ν [M. Petropoulou, S. Dimitrakoudis, P. Padovani, A. Mastichiadis, E.R., MNRAS (2015)] leptonic + pe p-syn NED archival leptonic + p π all processes radio leptonic + p-syn π 0 ROSAT ν e + ν µ leptonic 1FGL (2008-2009) z 0,137 ν µ pe 2FGL (2008-2010) p π IC neutrino 22 2FGL_lc (2008-2010) log ε (eV) B(G) -6 -4 -2 0 2 4 6 8 10 12 14 16 5 -10 GeV TeV PeV 45.5 -10.5 R(cm) 3 x 10 15 45 -11 δ 44.5 log ν F ν (erg/sec/cm 2 ) 18 log ν L ν (erg/sec) -11.5 44 -12 6 x 10 -5 l (e,inj) 43.5 -12.5 43 10 -2 l (p,inj) -13 42.5 -13.5 Y νγ 2,0 42 -14 8 10 12 14 16 18 20 22 24 26 28 30 32 log ν (Hz) H 1914-194 16
17 ICRC 2017 E. RESCONI THE SCENARIOS 1- Blazars: Bzcat5; 2WHSP; 3FHL [10GeV– 2TeV] [Massaro et al. (2015); Y. L. Chang et al., A&A (2016); Fermi Collaboration, arXiv:1702.00664] 3FHL: 1556 objects BL Lac 712 FSRQ 141 blazar 309 candidate SFR, SBG 1, 4 SNR 17 PWN 8 As of today, well over 4,000 blazars are known. This number is increasing rapidly but it remains a small percentage of the over one million AGN known 17
18 ICRC 2017 E. RESCONI THE SCENARIOS 1- Blazars: cosmic evolution is different for HSP [M. Ajello 2013, P. Giommi et al. 1999; V. Beckmann et al. 2003] HSP … the evolution of BL Lacs slows down with luminosity, becoming negative for objects with L γ ≤ 10 45.5 erg s − 1 […] Subdividing the sample in HSP, ISP and LSP objects we find that the negative evolution is in fact isolated to the HSP population , while the ISP and LSP evolve positively from the lowest luminosities. 18
19 ICRC 2017 E. RESCONI THE SCENARIOS 2- Stellar collapses [Ando, Beacom, (2005) [E. Waxman & J. Bahcall, (1997)] [Murase et al, ApJL,651 (2006)] Razzaque, Meszaros,(2004)] credit to Anna Franckowiak
20 ICRC 2017 E. RESCONI THE SCENARIOS 2- Stellar collapses: GRBs [F. Lyu, et al., (2014); H.F. Yu, H.J. Eerten, J. Greiner, et al.,(2015)] peak luminosity vs. peak-energy plane Physical understanding of GRBs incomplete: (i) most γ -ray spectra of the prompt emission are too sharp to be consistent with synchrotron emission; (ii) simultaneous optical/ γ -ray observations of the prompt emission suggest that the emission is non- isotropic in the co-moving blast-wave frame; (iii) plateaus in the X-ray light curves of GRB afterglows as well as bright supernovae related to GRBs suggest energy injection over days to weeks, rather than seconds, giving preference to magnetic models rather than black hole formation.
Recommend
More recommend