higgsing the stringy higher spin symmetry
play

Higgsing the stringy higher spin symmetry Ida Zadeh Brandeis - PowerPoint PPT Presentation

Higgsing the stringy higher spin symmetry Ida Zadeh Brandeis University All about AdS 3 workshop ETH Z urich November 19, 2015 Based on: M. R. Gaberdiel, C. Peng, and IGZ, 1506.02045 Stringy symmetries at tensionless point In the context of


  1. Higgsing the stringy higher spin symmetry Ida Zadeh Brandeis University All about AdS 3 workshop ETH Z¨ urich November 19, 2015 Based on: M. R. Gaberdiel, C. Peng, and IGZ, 1506.02045

  2. Stringy symmetries at tensionless point In the context of the AdS 3 /CFT 2 correspondence, the symmetric product orbifold CFT of the D1-D5 system is dual to string theory on AdS 3 × S 3 × T 4 at the tensionless point. [Gaberdiel & Gopakumar, ‘14] The symmetric orbifold CFT has an infinite tower of massless conserved higher spin (HS) currents, a closed subsector of which are dual to the HS fields of the Vasiliev theory. This work: we consider deformation of the symmetric orbifold CFT which corresponds to switching on the string tension and study the behaviour of symmetry generators of the theory.

  3. Outline ◮ Symmetric orbifold CFT and the stringy symmetries ◮ Higgsing stringy symmetries ◮ Results ◮ Summary

  4. D1-D5 system 0 1 2 3 4 5 6 7 8 9 where M is T 4 or K 3.

  5. D1-D5 system 0 1 2 3 4 5 6 7 8 9 where M is T 4 or K 3. In the limit where size of T 4 ≪ size of S 1 , worldvolume gauge theory of D branes is a 2d field theory that lives on S 1 .

  6. D1-D5 system 0 1 2 3 4 5 6 7 8 9 where M is T 4 or K 3. In the limit where size of T 4 ≪ size of S 1 , worldvolume gauge theory of D branes is a 2d field theory that lives on S 1 . It flows in IR to a CFT described by a sigma model whose target space is a resolution of symmetric product orbifold [Vafa, ‘95] Sym N +1 ( T 4 ) = ( T 4 ) N +1 / S N +1 , ( N + 1 = N 1 N 5 ) .

  7. AdS 3 /CFT 2 String theory on AdS 3 × S 3 × T 4 is dual to symmetric product orbifold CFT. [Maldacena, ‘97] Free orbifold point is the analogue of free Yang Mills theory for the case of D3 branes.

  8. AdS 3 /CFT 2 String theory on AdS 3 × S 3 × T 4 is dual to symmetric product orbifold CFT. [Maldacena, ‘97] Free orbifold point is the analogue of free Yang Mills theory for the case of D3 branes. Symmetric product orbifold CFT ◮ Generators of left-moving superconformal algebra: L n , G α r , and J l n (similar for right-moving generators). ◮ At the orbifold point, we have a free CFT of 2( N + 1) complex bosons and 2( N + 1) complex fermions and their conjugates: ∂φ i a , ∂ ¯ φ i a , ψ i ψ i ¯ a , a , i ∈ { 1 , 2 } , a ∈ { 1 , · · · , N + 1 } , plus right-moving counterparts. S N +1 acts by permuting N + 1 copies of T 4

  9. Higher spin embedding The perturbative part of the HS dual coset CFT forms a closed subsector of the symmetric orbifold CFT. [Gaberdiel & Gopakumar, ‘14] All states of the symmetric orbifold CFT are organised in terms of representations of the HS W ( N =4) [0] algebra. ∞ The chiral algebra of symmetric orbifold CFT is written as � Z vac , stringy ( q , y ) = n (Λ) χ (0;Λ) ( q , y ) . Λ

  10. Original W N =4 algebra ∞ s : ( 1 , 1 ) s + 1 2 : ( 2 , 2 ) ∞ R ( s ) : � R ( s ) , � N = 4 � ⊕ ( 3 , 1 ) ⊕ ( 1 , 3 ) . s + 1 : s + 3 2 : ( 2 , 2 ) s =1 s + 2 : ( 1 , 1 ) Free field realisation of HS fields dual to Vasiliev theory is in terms of neutral bilinears: N +1 a ∈ { ∂ # ¯ φ i , ∂ # ¯ � P 1 a P 2 P 1 a ∈ { ∂ # φ i , ∂ # ψ i } , P 2 ψ i } . a , a =1

  11. Stringy HS fields HS fields of symmetric orbifold theory come from the untwisted sector of orbifold. Their single particle symmetry generators are: N +1 � P 1 a · · · P m a , a =1 where P j a is one of the 4 bosons/fermions or their derivatives in the a th copy. They fall into additional W N =4 representations: hugely extend ∞ coset W algebra � W N =4 ⊕ (0; [ n , 0 , · · · , 0 , ¯ n ]) , m = n + ¯ n . ∞ n , ¯ n

  12. Stringy HS fields descendants [Gaberdiel & Gopakumar, ‘15]

  13. Example: cubic generators ( m = 3) a ∈ { ∂ # ¯ φ i , ∂ # ¯ P 1 a , P 2 a , P 3 a ∈ { ∂ # φ i , ∂ # ψ i } P 1 a , P 2 a , P 3 ψ i } , or lie in the multiplets (0; [3 , 0 , · · · , 0 , 0]) , (0; [0 , 0 , · · · , 0 , 3]) : ∞ � � � R ( s ) ( 2 , 1 ) ⊕ R ( s +3 / 2) ( 1 , 2 ) n ( s ) , s =2 q 2 ∞ � n ( s ) q s , and (1 − q 2 )(1 − q 3 ) = where s =2 s : ( 2 , 1 ) s : ( 1 , 2 ) s + 1 s + 1 2 : ( 3 , 2 ) ⊕ ( 1 , 2 ) 2 : ( 2 , 3 ) ⊕ ( 2 , 1 ) R ( s ) ( 2 , 1 ) : R ( s ) ( 1 , 2 ) : ( 4 , 1 ) ⊕ ( 2 , 1 ) ⊕ ( 2 , 3 ) , ( 1 , 4 ) ⊕ ( 1 , 2 ) ⊕ ( 3 , 2 ) . s + 1 : s + 1 : s + 3 s + 3 ( 3 , 2 ) ⊕ ( 1 , 2 ) ( 2 , 3 ) ⊕ ( 2 , 1 ) 2 : 2 : s + 2 : ( 2 , 1 ) s + 2 : ( 1 , 2 )

  14. Outline ◮ Symmetric orbifold CFT and the stringy symmetries ◮ Higgsing stringy symmetries ◮ Results ◮ Summary

  15. Higgsing of stringy symmetries ◮ At the tensionless point, the symmetry algebra is much bigger than N = 4 superconformal algebra + algebra of Vasiliev HS theory. ◮ As string tension is switched on, HS symmetries are broken. Expect that Regge trajectories emerge: Vasiliev fields fall into the leading trajectory. Higher trajectories correspond to additional HS fields — which become massless at tensionless point. ◮ We examine this picture by switching on string tension and studying behaviour of symmetry generators of symmetric orbifold CFT.

  16. Higgsing of stringy symmetries ◮ Switching on tension corresponds to deforming CFT away from orbifold point by an exactly marginal operator Φ, which belongs to twist-2 sector. X BH X orbifold CFT ◮ Φ is the super-descendant of BPS ground state: ∝ G − 1 / 2 ˜ G − 1 / 2 | Ψ 2 � , and preserves the two SO (4) symmetries.

  17. Symmetries broken? First order deformation analysis: criterion for spin s field W ( s ) of the chiral algebra to remain chiral under deformation by Φ [Cardy, ’90; Fredenhagen, Gaberdiel, Keller, ’07; Gaberdiel, Jin, Li, ‘13] ⌊ s + h Φ ⌋− 1 ( − 1) l ( L − 1 ) l W ( s ) N ( W ( s ) ) ≡ � − s +1+ l Φ = 0 , l ! l =0 where z W ( s ) ( z , ¯ z ) = g π N ( W ( s ) ) . ∂ ¯ N = 4 superconformal algebra is preserved, while HS currents are not conserved: gigantic symmetry algebra is broken down to the N = 4 SCA.

  18. Conformal perturbation theory Compute relevant anomalous dimensions and determine masses of the corresponding fields. Consider adding a small perturbation to the action of free CFT. The normalised perturbed 2pf is: � W ( s ) i ( z 1 ) W ( s ) j ( z 2 ) e δ S � � � � W ( s ) i ( z 1 ) W ( s ) j ( z 2 ) d 2 w Φ( w , ¯ Φ = δ S = g w ) . , � � e δ S Upon expanding in powers of g , we have � � � � W ( s ) i ( z 1 ) W ( s ) j ( z 2 ) W ( s ) i ( z 1 ) W ( s ) j ( z 2 ) Φ − = � � g 2 � � d 2 w 1 d 2 w 2 W ( s ) i ( z 1 ) W ( s ) j ( z 2 ) Φ( w 1 , ¯ w 1 ) Φ( w 2 , ¯ w 2 ) 2 �� � � � � d 2 w 1 d 2 w 2 W ( s ) i ( z 1 ) W ( s ) j ( z 2 ) + O ( g 3 ) . Φ( w 1 , ¯ w 1 ) Φ( w 2 , ¯ w 2 ) −

  19. Anomalous dimensions 2pf of quasiprimary operators is of the form c ij � � W ( s ) i ( z 1 ) W ( s ) j ( z 1 ) Φ ∼ γ ij , ( z 1 − z 2 ) 2( s + γ ij ) (¯ z 2 ) 2¯ z 1 − ¯ where for small γ ij reads c ij � 1 − 2 γ ij ln( z 1 − z 2 ) − 2¯ γ ij ln(¯ � ≈ z 1 − ¯ z 2 )+ · · · . ( z 1 − z 2 ) 2 s Read coefficient of the log term in perturbed 2pf.

  20. Anomalous dimensions To first order, γ ij is given by 3 point function � � W ( s ) i ( z 1 ) Φ( w 1 , ¯ w 1 ) W ( s ) j ( z 2 ) which vanishes: Φ has h Φ = ¯ h Φ = 1 while W ’s have ¯ h W = 0. Leading correction to the 2pf appears at second order: γ ij = g 2 π 2 � � N ( W ( s ) i ) N ( W ( s ) j ) , ⌊ s + h Φ ⌋− 1 ( − 1) l ( L − 1 ) l W ( s ) N ( W ( s ) ) ≡ � − s +1+ l Φ = 0 . l ! l =0

  21. Operator mixing In general, matrix γ ij is not diagonal: need to diagonalise it to extract anomalous dimensions. ◮ In general, fields within each family, m = 2 , 3 , · · · , mix (multiplicities n ( s ) > 1). ◮ There is also mixing present between fields from different families. descendants

  22. Outline ◮ Symmetric orbifold CFT and the stringy symmetries ◮ Higgsing stringy symmetries ◮ Results ◮ Summary

  23. Vasiliev HS fields: s − 2 � s − 1 �� s − 1 � W ( s ) = ∂ s − 1 − q ¯ � ( − 1) q φ 1 ∂ q +1 φ 2 , q q + 1 q =0 γ ij = g 2 π 2 � � N ( W ( s ) i ) N ( W ( s ) j ) .

  24. Vasiliev HS fields: s − 2 � s − 1 �� s − 1 � W ( s ) = ∂ s − 1 − q ¯ � ( − 1) q φ 1 ∂ q +1 φ 2 . q q + 1 q =0 The diagonal elements γ ii can be computed analytically and in closed form: p =0 ( − 1) s − p � 2 s g 2 π 2 � s � P 2 ( s , p ) γ ( s ) = s − p , ( N + 1) E 2 ( s ) where s − 1 s − 1 ( − 1) s +1+ p + q � s s �� s s �� �� � � � E 2 ( s ) = q q + 1 p p + 1 q =0 p =0 � � × ( − 2) ( q ) ( − 2 − q ) ( s − p − 1) ( − 2) ( s − q − 1) ( q − s − 1) ( p ) , p − 3 / 2 � P 2 ( s , p ) = n ( p − n ) f ( s , p , n ) f ( s , − p , n − p ) n =3 / 2 2 ( − 1) s +1 Θ( p − 2) f ( s , p , 1 / 2) f ( s , − p , − 1 / 2) ( p − 1 / 2) + 3 + 1 2 δ p , 1 f ( s , 1 , 1 / 2) f ( s , − 1 , − 1 / 2) , s − 1 ( − 1) q � s s �� � � ( − 1 − p + n ) ( s − q − 1) ( − 1 − n ) ( q ) . f ( s , p , n ) = q + 1 q q =0

Recommend


More recommend