heavy vector t riplets bridging theory and data
play

Heavy Vector T riplets: Bridging Theory and Data Andrea Thamm - PowerPoint PPT Presentation

Benasque, 17 April 2014 Heavy Vector T riplets: Bridging Theory and Data Andrea Thamm cole Polytechnique Fdrale de Lausanne in collaboration with D. Pappadopulo, R. Torre, A. Wulzer based on arXiv:1402.4431 Outline 1. Motivations


  1. Benasque, 17 April 2014 Heavy Vector T riplets: Bridging Theory and Data Andrea Thamm École Polytechnique Fédérale de Lausanne in collaboration with D. Pappadopulo, R. Torre, A. Wulzer � based on arXiv:1402.4431 �

  2. Outline 1. Motivations � 2. Simple Simplified Model � 3. Limit setting procedure � 4. Data and Bounds � 5. Conclusions Andrea Thamm 3 �

  3. Motivation Andrea Thamm 3 �

  4. c ( ⃗ p ) L ( ⃗ c ) ⃗ Theory y Data y L s Motivation ✤ indirect probes of new physics very important � ✤ at LHC also many direct probes, for example: SPIN 1 Weakly coupled Strongly coupled Z’ models, 
 Composite Higgs models sequential W’ ,… very difficult to reinterpret ✤ aim: phenomenological Lagrangian for heavy spin-1 resonances 
 to bridge between experimental data and theoretical models � ✤ idea: � present bounds in terms of simplified model parameters � any model can be matched to simplified Lagrangian

  5. A Simple Simplified Model Andrea Thamm 3 �

  6. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν

  7. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν

  8. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Coupling to SM Vectors Coupling to SM fermions J µ a X f L γ µ τ a f L = F f W L , Z L , h f ∼ g 2 c F ∼ g V c H g V V µ V µ ¯ f W L , Z L , h c F V · J F c l V · J l + c q V · J q + c 3 V · J 3 →

  9. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Couplings among Vectors � ✤ do not contribute to V decays � ✤ do not contribute to single production � ✤ only effects through (usually small) VW mixing � � irrelevant for phenomenology only need ( c H , c F )

  10. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Weakly coupled model Strongly coupled model typical strength of V interactions g V g V ≤ 4 π g V ∼ g ∼ 1 dimensionless coefficients c i c H ∼ − g 2 /g 2 c F ∼ 1 and c H ∼ c F ∼ 1 V

  11. Production Rates ✤ DY and VBF production � � 4 π 2 Γ V → ij dL ij 48 π 2 dL W L i W L j Γ V → W L i W L j � � X X σ DY = � σ V BF = � M V d ˆ s 3 � M V d ˆ s � � i,j ∈ p s = M 2 � ˆ i,j ∈ p s = M 2 ˆ V V model 
 model 
 dependent independent ✤ can compute production rates analytically! � ✤ easily rescale to different points in parameter space � ✤ VBF subleading in motivated part of parameter space 10 4 10 0 10 - 1 W L + Z L H V + L 10 3 u i d j H V + L - H V 0 L 10 - 2 + W L u i u j H V 0 L W L 10 2 10 - 3 - Z L H V - L W L d i d j H V 0 L 10 1 10 - 4 d i u j H V - L 10 0 10 - 5 ` @ pb D ` @ pb D 10 - 1 10 - 6 dL ê d s dL ê d s 10 - 7 10 - 2 10 - 8 10 - 3 10 - 9 10 - 4 8 TeV 8 TeV 10 - 10 10 - 5 10 - 11 10 - 6 CTEQ6L1 H m 2 = s ` L 2 L 10 - 12 CTEQ6L1 H m 2 = M W 10 - 13 10 - 7 0 1 2 3 4 5 0 1 2 3 4 5 ` = M V @ TeV D ` = M V @ TeV D s s

  12. Decay widths ✤ relevant decay channels: di-lepton, di-quark, di-boson ◆ 2 M V ✓ g 2 c F 0 ' 2 Γ V 0 → ff ' N c [ f ] Γ V ± → ff 96 π , g V ' g 2 V c 2 H M V ⇥ 1 + O ( ζ 2 ) ⇤ Γ V 0 → W + Γ V ± → W ± ' L W − L Z L 192 π L ' g 2 V c 2 H M V ⇥ 1 + O ( ζ 2 ) ⇤ Γ V 0 → Z L h Γ V ± → W ± ' L h 192 π Weakly coupled model Strongly coupled model g V c H ' g 2 c F /g V ' g 2 /g V g 2 c F /g V ' g 2 /g V g V c H ' � g V , 0.12 è W + W - ll è 0.10 W + W - ll Zh 10 - 1 nn Zh BR H V 0 Æ 2 X L BR H V 0 Æ 2 X L nn uu bb 0.08 Model A uu bb Model B è tt dd è tt dd 0.06 10 - 2 g V = 1 0.04 10 - 3 0.02 g V = 3 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 M 0 @ GeV D M 0 @ GeV D

  13. Data and Bounds Andrea Thamm 3 �

  14. SM s SM H pp Æ l + l - L Limit setting Signal only s H pp Æ V 0 Æ l + l - L Signal BW s H pp Æ V 0 L â BR H V 0 Æ l + l - L SM + Signal H w ê o interference L s H pp Æ V 0 Æ l + l - L + s SM H pp Æ l + l - L SM + BW H w ê o interference L s H pp Æ V 0 L â BR H V 0 Æ l + l - L + s SM H pp Æ l + l - L Effect of interference - 1 < y < 1 ✤ want limits on since model-independent � σ × BR ✤ must stay in a window around the peak, 
 otherwise finite widths effects must be considered Di-lepton searches for V 0 0 LHC û 8TeV LHC û 8TeV 4 - 5 1 -s Full ê s BW H % L M V = 2 TeV M V = 3.5 TeV 8 G ê M V = 10 % - 10 G ê M V = 11 % d s ê dM l + l - @ 10 - 7 pb ê GeV D d s ê dM l + l - @ 10 - 7 pb ê GeV D - 15 3 - 20 6 - 1.0 - 0.5 0.0 0.5 1.0 20 y 10 1 -s Full ê s BW H % L 2 4 0 - 10 - 20 1 - 1.0 - 0.5 0.0 0.5 1.0 2 y 2 → 2 0 1200 1400 1600 1800 2000 2200 2600 2800 3000 3200 3400 3600 3800 M l + l - @ GeV D M l + l - @ GeV D BW 1. distortion from Breit-Wigner 
 due to steep fall of parton luminosities at large energies ✤ large distortion for non-negligible widths � ✤ still under control in window around the peak � [ M − Γ , M + Γ ] ✤ but large tail [Accomando, Becciolini, Balyaev, Moretti, Shepherd, arXiv:1304.6700 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arXiv:1110.0713]

  15. SM s SM H pp Æ l + l - L Limit setting Signal only s H pp Æ V 0 Æ l + l - L Signal BW s H pp Æ V 0 L â BR H V 0 Æ l + l - L SM + Signal H w ê o interference L s H pp Æ V 0 Æ l + l - L + s SM H pp Æ l + l - L SM + BW H w ê o interference L s H pp Æ V 0 L â BR H V 0 Æ l + l - L + s SM H pp Æ l + l - L Effect of interference - 1 < y < 1 ✤ want limits on since model-independent � σ × BR ✤ must stay in a window around the peak, 
 otherwise finite widths effects must be considered Di-lepton searches for V 0 constructive 0 LHC û 8TeV LHC û 8TeV 4 - 5 1 -s Full ê s BW H % L M V = 2 TeV M V = 3.5 TeV 8 G ê M V = 10 % - 10 G ê M V = 11 % d s ê dM l + l - @ 10 - 7 pb ê GeV D d s ê dM l + l - @ 10 - 7 pb ê GeV D - 15 3 - 20 6 - 1.0 - 0.5 0.0 0.5 1.0 20 y 10 1 -s Full ê s BW H % L 2 4 0 - 10 - 20 1 - 1.0 - 0.5 0.0 0.5 1.0 2 y 0 1200 1400 1600 1800 2000 2200 2600 2800 3000 3200 3400 3600 3800 M l + l - @ GeV D M l + l - @ GeV D background destructive 2. interference with SM background ✤ depends on S/B ratio � ✤ can be a large effect � ✤ tail strongly model dependent, not σ × BR [Accomando, Becciolini, Balyaev, Moretti, Shepherd, arXiv:1304.6700 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arXiv:1110.0713]

Recommend


More recommend