half lives and branching ratios for two mirror decays
play

half-lives and branching ratios for two mirror decays involving 23 - PowerPoint PPT Presentation

Precise measurements of half-lives and branching ratios for two mirror decays involving 23 Mg and 27 Si Ccile Magron CEN Bordeaux-Gradignan European Nuclear Physics Conference 2015 2 O UTLINE OF THE TALK o Purpose of this work o JYFL13


  1. Precise measurements of half-lives and branching ratios for two mirror 𝛾 decays involving 23 Mg and 27 Si CΓ©cile Magron CEN Bordeaux-Gradignan European Nuclear Physics Conference 2015

  2. 2 O UTLINE OF THE TALK o Purpose of this work o JYFL13 experiment o Analysis and results

  3. 3 P URPOSE OF THIS WORK o Standard Model describes 3 of the 4 fundamental interactions: β€’ Strong interaction p n β€’ Electromagnetic interaction β€’ Weak interaction Ξ² decays u u d d u d W + e + pion super-allowed Fermi free neutron nuclear mirror transitions 0 + β†’ 0 + decay decay beta transitions πœ‰ e o Two hypotheses of the SM can be tested: β€’ Conserved Vector Current ( CVC ) β€’ Unitarity of the Cabibbo-Kobayashi-Maskawa ( CKM ) matrix J. C. Hardy and I. S. Towner, Phys. Rev. C 91 , 025501 (2015).

  4. 4 P URPOSE OF THIS WORK o CVC hypothesis: G v unique for all beta transitions 𝑔𝑒 = 𝑔 𝑹 𝑭𝑫 (1 + 𝑄 𝐹𝐷 ) 𝑼 𝟐 πŸ‘ experimental parameters π‘ͺ. 𝑺. theoretical corrections constant for mirror π‘Š βˆ’ πœ€ 𝐷 π‘Š β€² ℱ𝑒 = 𝑔𝑒 1 + πœ€ 𝑆 1 + πœ€ 𝑂𝑇 transitions 𝑑𝑑𝑒 0 | 2 1 + 𝑔 𝝇 2 = 2 |𝑁 𝐺 ℱ𝑒 0 = ℱ𝑒𝐻 π‘Š 𝐡 𝑔 π‘Š ) π‘Š 2 (1 + βˆ† 𝑆 𝐻 π‘Š 𝑩 𝒀 𝑢 𝒂 𝑼 𝟐 πŸ‘ 𝑹 𝑭𝑫 π‘ͺ. 𝑺. 𝜹 𝑩 𝒀′ 𝑢+𝟐 π’‚βˆ’πŸ

  5. 5 P URPOSE OF THIS WORK o Unitarity of the CKM matrix Quark mixing matrix: π‘Š π‘Š π‘Š 𝑣𝑒 𝑣𝑑 𝑣𝑐 2 + π‘Š 2 + π‘Š 2 = 1 β€’ First raw: π‘Š π‘Š π‘Š π‘Š π‘Š 𝐷𝐿𝑁 = 𝑣𝑒 𝑣𝑑 𝑣𝑐 𝑑𝑒 𝑑𝑑 𝑑𝑐 π‘Š π‘Š π‘Š 𝑒𝑒 𝑒𝑑 𝑒𝑐 2 2 = 𝐻 π‘Š π‘Š : main term 𝑣𝑒 𝐻 𝜈 o Current values for 5 mirror transitions: Need for better β€’ ℱ𝑒 0 = 6173 22 s (0.4% precision) precision to compete β€’ π‘Š 𝑣𝑒 = 0.9719 17 (0.2% precision) with super-allowed transitions N. Severijns et al. , Phys. Rev. C 78 , 055501 (2008).

  6. 6 JYFL13 EXPERIMENT ( 23 Mg , 27 Si ) o Performed at JyvΓ€skylΓ€ University (Finland) with IGISOL πŸ‘πŸ’ 𝑢𝒃 πŸπŸ‘ πŸ‘πŸ’ 𝑡𝒉 𝟐𝟐 𝒒 + β†’ + 𝒐 𝟐𝟐 πŸπŸ‘ πŸ‘πŸ– πŸ‘πŸ– π‘©π’Ž πŸπŸ“ 𝑻𝒋 πŸπŸ’ 𝒒 + β†’ + 𝒐 πŸπŸ’ πŸπŸ“ o Observed decays: + 𝒇 + + πœ‰ 𝑓 + 𝒇 + + πœ‰ 𝑓 23 23 𝑂𝑏 βˆ— 27 27 π΅π‘š βˆ— 𝑁𝑕 β†’ 𝑇𝑗 β†’ 12 11 14 13 ↓ ↓ 23 27 𝑂𝑏 + 𝜹 π΅π‘š + 𝜹 11 13

  7. 7 JYFL13 EXPERIMENT ( 23 Mg , 27 Si ) o Half-lives: β€’ Ξ² + particles detected with plastic plastic scintillator tape transport Ge scintillator (inside) system o Branching ratios: β€’ Ξ³ rays recorded with germanium detector (Ge) precisely calibrated in efficiency (10 -3 ) B. Blank et al. , NIM A 776 (2015). o Two data acquisitions: β€’ a scaler for half-lives (fast) β€’ a list mode for branching ratios (slow)

  8. 8 A NALYSIS AND RESULTS Focus on 23 Mg analysis

  9. 8 A NALYSIS AND RESULTS Focus on 23 Mg analysis o Half-life: 1 without DT correction with DT correction 3 1 Background counts Accumulation 2 Tape move 3 Decay ( ~10 π‘ˆ 1 2 4 ) 2 4 time (s) time (s) fit of the decay part

  10. 8 A NALYSIS AND RESULTS Focus on 23 Mg analysis o Half-life: time (s) same analysis for all runs

  11. 9 A NALYSIS AND RESULTS Focus on 23 Mg analysis o Half-life: β€’ No systematic dependence on analysis and experiment parameters:  beginning and end of the fit,  number of nuclei in the decay phase,  background,  high voltage. T 1/2 = 11.3028 Β± 0.0043 s (0.04% precision)

  12. 9 A NALYSIS AND RESULTS Focus on 23 Mg analysis o Half-life: β€’ No systematic dependence on analysis and experiment parameters:  beginning and end of the fit,  number of nuclei in the decay phase,  background,  high voltage. T 1/2 = 11.3028 Β± 0.0043 s (0.04% precision) 23 Mg o Branching ratio: B.R. exc ~ ~ 8, 8,7% 𝑂 𝛿,𝑒𝑓𝑒𝑓𝑑𝑒𝑓𝑒 1 𝐢. 𝑆. 𝑕.𝑑. = 1 βˆ’ 𝜁 𝛿 𝑂 B.R. g.s. ~ ~ 91 91,2% 𝛾,𝑒𝑓𝑒𝑓𝑑𝑒𝑓𝑒 440 ke 44 keV Ξ³ 𝐢. 𝑆. 𝑓𝑦𝑑 stable 23 Na

  13. 10 C ONCLUSIONS o New T 1/2 averages: β€’ 23 Mg: 3 times more precise T 1/2 = 11.3085(133) s

  14. 10 C ONCLUSIONS o New T 1/2 averages: β€’ 23 Mg : 3 times more precise T 1/2 = 11.3085(133) s β€’ 27 Si : twice more precise T 1/2 = 4.1166(74) s

  15. 10 C ONCLUSIONS o New T 1/2 averages: β€’ 23 Mg : 3 times more precise T 1/2 = 11.3085(133) s β€’ 27 Si : twice more precise T 1/2 = 4.1166(74) s o To continue: β€’ better precision for branching ratio of old values 23 Mg β€’ measure ρ coefficients for these nuclei N. Severijns et al. , Phys. Rev. C 78 , 055501 (2008).

  16. 11 Thank you for your attention B. Blank, M. Gerbaux, J. Giovinazzo, S. GrΓ©vy, H. GuΓ©rin, T. Kurtukian-Nieto CEN Bordeaux Gradignan, F-33175 Gradignan, France A. de Roubin Max-Plank-Institut FΓΌr Kernphysik, G-69029 Heidelberg, Germany T. Eronen, D. Gorelov, J. Hakala, V. Kolhinen, J. Koponen, I. Moore, H. PenttilΓ€, I. Pohjalainen, J. Reinikainen, M. Reponen, S. Rinta-Antila, A. Voss JYFL, FI-40014 JyvΓ€skylΓ€, Finland

  17. Backup

  18. Dead time correction: 𝑑𝑖𝑀 𝑑 = 1 βˆ’ 𝑑𝑖𝑀 βˆ— πΈπ‘ˆ π‘ˆ π‘π‘—π‘œ 𝑑𝑖𝑀 : channel value, number of counts before correction, πΈπ‘ˆ : dead time of the run, π‘ˆ π‘π‘—π‘œ : time per channel.

  19. Systematic errors

  20. Precision on Vud for the different decays J. Hardy

Recommend


More recommend