grammar implementation with lexicalized tree adjoining
play

Grammar Implementation with Lexicalized Tree Adjoining Grammars and - PowerPoint PPT Presentation

Grammar Implementation with Lexicalized Tree Adjoining Grammars and Frame Semantics Introduction Laura Kallmeyer, Timm Lichte, Rainer Osswald & Simon Petitjean University of Dsseldorf DGfS CL Fall School, September 11, 2017 SFB 991 What


  1. Why “working” with TAG? Formal reasons Hypothesis of the adequacy of expressive power TAG exactly provides the expressive power needed to treat NL. (The complexity of a language is determined by the weakest formal grammar that generates it.) Why is the formal complexity of natural languages interesting? It allows one to gain insights into ⇒ the general structure of natural language ⇒ the general human language capacity ⇒ the adequacy of grammar formalisms ⇒ lower bound of the computational complexity of NLP tasks Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 24 11

  2. Why “working” with TAG? Formal reasons Expressive power in terms of a specific generative capacity: Weak generative capacity (WGC) The capacity to generate string languages . Strong generative capacity (SGC) The capacity to generate tree languages . Derivational generative capacity (DGC) The capacity to generate string languages in a certain way. In what follows we will consider the weak generative capacity . Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 25 12

  3. Why “working” with TAG? Formal reasons How much expressive power do we need to treat NL? Chomsky(-Schützenberger) type 0: recursively enumerable hierarchy HPSG, TG, TM a f ( n ) (Chomsky & Schützenberger 1963) type 1: context-sensitive a 2 n , a n b n c n ..., W k LFG, LBA type 2: context-free a n b m c m d n , WW R CFG, PDA type 3: regular a n b m c k d l FSA Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 26 13

  4. Why “working” with TAG? Formal reasons How much expressive power do we need to treat NL? Chomsky(-Schützenberger) type 0: recursively enumerable hierarchy HPSG, TG, TM a f ( n ) (Chomsky & Schützenberger 1963) type 1: context-sensitive a 2 n , a n b n c n ..., W k LFG, LBA type 2: context-free a n b m c m d n , WW R CFG, PDA NL is not regular! type 3: regular (Chomsky 1956; 1957) a n b m c k d l FSA center embedding with rela- tive clauses n 1 n 2 n 3 v 3 v 2 v 1 Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 27 13

  5. Why “working” with TAG? Formal reasons How much expressive power do we need to treat NL? Chomsky(-Schützenberger) type 0: recursively enumerable hierarchy HPSG, TG, TM a f ( n ) (Chomsky & Schützenberger 1963) type 1: context-sensitive a 2 n , a n b n c n ..., W k LFG, LBA type 2: context-free NL is not context-free! a n b m c m d n , WW R CFG, PDA Shieber (1985) type 3: regular cross serial dependencies in Dutch and Swiss-German a n b m c k d l FSA n 1 n 2 n 3 v 1 v 2 v 3 Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 28 13

  6. Why “working” with TAG? Formal reasons How much expressive power do we need to treat NL? Chomsky(-Schützenberger) type 0: recursively enumerable hierarchy HPSG, TG, TM a f ( n ) (Chomsky & Schützenberger 1963) type 1: context-sensitive a 2 n , a n b n c n ..., W k LFG, LBA NL is context-sensitive? type 2: context-free a n b m c m d n , WW R CFG, PDA type 3: regular a n b m c k d l FSA Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 29 13

  7. Why “working” with TAG? Formal reasons How much expressive power do we need to treat NL? Chomsky(-Schützenberger) type 0: recursively enumerable hierarchy HPSG, TG, TM a f ( n ) (Chomsky & Schützenberger 1963) type 1: context-sensitive a 2 n , a n b n c n ..., W k LFG, LBA mildly context-sensitive NL is mildly context- sensitive? (Joshi 1985) a n b m c n d m , WW TAG, EPDA ⊃ CFL type 2: context-free cross-serial dep. CFG, PDA a n b m c m d n , WW R semi-linear in PTIME type 3: regular FSA a n b m c k d l Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 30 13

  8. Why “working” with TAG? Formal reasons How much expressive power do we need to treat NL? Chomsky(-Schützenberger) type 0: recursively enumerable hierarchy HPSG, TG, TM a f ( n ) (Chomsky & Schützenberger 1963) type 1: context-sensitive a 2 n , W ( # W ) k LFG, LBA W k a n b n c n ... mildly context-sensitive a n b m c n d m , TAG, EPDA WW W # W type 2: context-free a n b m c m d n , CFG, PDA WW R W # W R type 3: regular FSA a n b m c k d l Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 31 13

  9. Why “working” with TAG? Linguistic reasons extended domain of locality S NP VP V NP repaired long-distance dependencies / discontinuous constituents (3) Who did Mary say that Tom claimed ...repaired the fridge? multi-word expressions (4) to kick the bucket (‘to die’) incarnation of Construction Grammar Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 32 14

  10. Outline of today’s course Why “working” with TAG? 1 Formal reasons Linguistic reasons From CFG to TAG 2 Context-Free Grammars Lexicalization Tree Substitution Grammars (TSG) Adding adjunction Further related formalisms 3 Summary & outlook 4 Appendix: NL and the generative capacity of grammar formalisms 5 Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 33 15

  11. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N AP → A N → Peter | fridge Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 34 16

  12. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge S Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 35 16

  13. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge NP VP Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 36 16

  14. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge N VP Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 37 16

  15. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter VP Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 38 16

  16. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter AP VP Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 39 16

  17. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter A VP Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 40 16

  18. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter easily VP Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 41 16

  19. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter easily V NP Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 42 16

  20. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter easily repaired NP Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 43 16

  21. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter easily repaired Det N Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 44 16

  22. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter easily repaired the N Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 45 16

  23. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { S → NP VP VP → V NP | AP VP NP → N | Det N Example derivation : AP → A N → Peter | fridge Peter easily repaired the fridge Det → the A → easily V → repaired } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 46 16

  24. From CFG to TAG: Context-Free Grammar string rewriting replace non-terminals by strings of terminals and non-terminals G CFG = � N , T , S , P � P = { Example derivation history: S → NP VP S VP → V NP | AP VP NP VP NP → N | Det N AP → A N AP VP N → Peter | fridge Peter A V NP Det → the A → easily easily repaired Det N V → repaired the fridge } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 47 16

  25. From CFG to TAG: Context-Free Grammar Why not stick to CFGs (literally)? low generative capacity: cannot describe all NL phenomena; e.g. cross-serial dependencies ( a n b m c n d m ) Swiss German (Shieber 1985) duplication ( w # w ) Bambara (Culy 1985) multiple agreement ( a n b n c n ) Bantu languages Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 48 17

  26. From CFG to TAG: Context-Free Grammar Why not stick to CFGs (literally)? low generative capacity: cannot describe all NL phenomena; e.g. cross-serial dependencies ( a n b m c n d m ) Swiss German (Shieber 1985) duplication ( w # w ) Bambara (Culy 1985) multiple agreement ( a n b n c n ) Bantu languages poor support of expressing linguistic generalizations Rules have a very limited domain of locality. ( � no strong lexicalization) atomic non-terminals ( � massive proliferation) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 49 17

  27. From CFG to TAG: Context-Free Grammar Why not stick to CFGs (literally)? low generative capacity: cannot describe all NL phenomena; e.g. cross-serial dependencies ( a n b m c n d m ) Swiss German (Shieber 1985) duplication ( w # w ) Bambara (Culy 1985) multiple agreement ( a n b n c n ) Bantu languages poor support of expressing linguistic generalizations Rules have a very limited domain of locality. ( � no strong lexicalization) atomic non-terminals ( � massive proliferation) First step: turn strings into trees! Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 50 17

  28. Lexicalization lexicalization → each structure of the grammar has at least one non-terminal Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 51 18

  29. Lexicalization lexicalization → each structure of the grammar has at least one non-terminal Lexicalized grammar A lexicalized grammar consists of: (i) a finite set of structures each associated with a lexical item (anchor); and (ii) operation(s) for composing these structures. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 52 18

  30. Lexicalization lexicalization → each structure of the grammar has at least one non-terminal Lexicalized grammar A lexicalized grammar consists of: (i) a finite set of structures each associated with a lexical item (anchor); and (ii) operation(s) for composing these structures. Lexicalization A formalism F can be lexicalized by another formalism F ′ , if for any finitely ambiguous grammar G in F , there is a grammar G ′ in F ′ , such that (i) G ′ is a lexicalized grammar; and (ii) G and G ′ generate the same tree set. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 53 18

  31. Lexicalization lexicalization → each structure of the grammar has at least one non-terminal Lexicalized grammar A lexicalized grammar consists of: (i) a finite set of structures each associated with a lexical item (anchor); and (ii) operation(s) for composing these structures. Lexicalization A formalism F can be lexicalized by another formalism F ′ , if for any finitely ambiguous grammar G in F , there is a grammar G ′ in F ′ , such that (i) G ′ is a lexicalized grammar; and (ii) G and G ′ generate the same tree set. weak vs. strong lexicalization weak lexicalization: preserve the string language strong lexicalization: preserve the tree structure Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 54 18

  32. Lexicalization Formally interesting: a finite lexicalized grammar provides finitely many analyses for each string (finitely ambiguous) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 55 19

  33. Lexicalization Formally interesting: a finite lexicalized grammar provides finitely many analyses for each string (finitely ambiguous) Linguistically interesting: syntactic properties of lexical items can be accounted for more directly each lexical item comes with the possibility of certain partial syntactic constructions Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 56 19

  34. Lexicalization Formally interesting: a finite lexicalized grammar provides finitely many analyses for each string (finitely ambiguous) Linguistically interesting: syntactic properties of lexical items can be accounted for more directly each lexical item comes with the possibility of certain partial syntactic constructions Computationally interesting: the search space during parsing can be delimited (grammar filtering) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 57 19

  35. Lexicalization of CFG’s Greibach normal-form (Greibach 1965): A → aX or A → a ( a ∈ V T ; A ∈ V N ; X ∈ ( V N ) ∗ ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 58 20

  36. Lexicalization of CFG’s Greibach normal-form (Greibach 1965): A → aX or A → a ( a ∈ V T ; A ∈ V N ; X ∈ ( V N ) ∗ ) example: a CFG G : S → SS , S → a Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 59 20

  37. Lexicalization of CFG’s Greibach normal-form (Greibach 1965): A → aX or A → a ( a ∈ V T ; A ∈ V N ; X ∈ ( V N ) ∗ ) example: a CFG G : S → SS , S → a lexicalize G ⇒ G ′ (Greibach): S → aS , S → a same string language, but not the same tree set Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 60 20

  38. Lexicalization of CFG’s Greibach normal-form (Greibach 1965): A → aX or A → a ( a ∈ V T ; A ∈ V N ; X ∈ ( V N ) ∗ ) example: a CFG G : S → SS , S → a lexicalize G ⇒ G ′ (Greibach): S → aS , S → a same string language, but not the same tree set by G ′ : by G : S S a S S S a S S S S S a S a a a a a Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 61 20

  39. Lexicalization of CFG’s Greibach normal-form (Greibach 1965): A → aX or A → a ( a ∈ V T ; A ∈ V N ; X ∈ ( V N ) ∗ ) example: a CFG G : S → SS , S → a lexicalize G ⇒ G ′ (Greibach): S → aS , S → a same string language, but not the same tree set by G ′ : by G : S S a S S S a S S S S S a S a a a a a � only weak lexicalization possible Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 62 20

  40. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G CFG = � N , T , S , P � G TSG = � N , T , S , I � P = { I = { S VP VP S → NP VP VP → V NP | AP VP NP VP V NP AP VP NP → N | Det N ≈ A NP NP AP AP → A N → Peter | fridge easily N Det N A Det → the N V N Det A → easily V → repaired fridge repaired Peter the } } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 63 21

  41. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP NP VP V NP AP VP Example derivation: A NP NP AP S easily N Det N A NP VP N V N Det fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 64 21

  42. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP NP VP V NP AP VP Example derivation: S A NP NP AP NP VP easily N Det N A N N V N Det fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 65 21

  43. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP Example derivation: NP VP V NP AP VP S A NP NP AP NP VP easily N Det N A N N V N Det Peter fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 66 21

  44. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP Example derivation: NP VP V NP AP VP S A NP NP AP NP VP easily N Det N A N AP VP N V N Det Peter fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 67 21

  45. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP Example derivation: NP VP V NP AP VP S A NP NP AP NP VP easily N Det N A N AP VP N V N Det Peter A fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 68 21

  46. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP Example derivation: S NP VP V NP AP VP NP VP A NP NP AP N AP VP easily N Det N A Peter A N V N Det easily fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 69 21

  47. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP Example derivation: S NP VP V NP AP VP NP VP A NP NP AP N AP VP easily N Det N A Peter A V NP N V N Det easily fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 70 21

  48. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP Example derivation: S NP VP V NP AP VP NP VP A NP NP AP N AP VP easily N Det N A Peter A V NP N V N Det easily repaired fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 71 21

  49. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { S VP VP Example derivation: S NP VP V NP AP VP NP VP A NP NP AP N AP VP easily N Det N A Peter A V NP N V N Det easily repaired Det N fridge repaired Peter the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 72 21

  50. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { Example derivation: S VP VP S NP VP V NP AP VP NP VP A NP NP AP N AP VP easily N Det N A Peter A V NP N V N Det easily repaired Det N fridge repaired Peter the the } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 73 21

  51. From CFG to TAG: Tree Substitution Grammar (TSG) First step: turn strings into trees! tree rewriting Substitution: replace a non-terminal leaf with a tree G TSG = � N , T , S , I � I = { Example derivation: S VP VP S NP VP V NP AP VP NP VP A NP NP AP N AP VP easily N Det N A Peter A V NP N V N Det easily repaired Det N fridge repaired Peter the the fridge } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 74 21

  52. From CFG to TAG: Tree Substitution Grammar (TSG) TSG versus CFG: weakly equivalent (same string languages, but more tree languages) S NP VP single recursion! AP VP V NP repaired still no strong lexicalization of CFG, cross-serial dependencies etc. Applications of TSG: Data-Oriented Parsing (DOP, Bod 2009) Second step: add adjunction! Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 75 22

  53. From CFG to TAG: Adding adjunction Adjunction: replace a non-terminal node with an “auxiliary” tree put the subtree of the replaced node under the footnode (*) S VP S NP VP AP VP* NP VP ⇒ AP VP A V NP A V NP easily repaired easily repaired Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 76 23

  54. From CFG to TAG: Adding adjunction Adjunction: replace a non-terminal node with an “auxiliary” tree put the subtree of the replaced node under the footnode (*) VP VP VP AP VP AP VP* AP VP* ⇒ A AP VP* A A easily A easily easily easily Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 77 23

  55. From CFG to TAG: Adding adjunction Adjunction: replace a non-terminal node with an “auxiliary” tree put the subtree of the replaced node under the footnode (*) VP VP VP AP VP AP VP* AP VP* ⇒ A AP VP* A A easily A easily easily easily ⇒ Adjunction at footnodes causes spurious ambiguities in derivations. ⇒ Therefore, this is usually forbidden. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 78 23

  56. From CFG to TAG: Example with adjunction tree rewriting Substitution: replace a non-terminal leaf with a tree Adjunction: replace a non-terminal node with an “auxiliary” tree G TSG = � N , T , S , I � VP I = { S S VP VP AP VP* NP VP NP VP V NP AP VP A repaired NP ≈ A NP NP AP easily easily N Det N A NP NP Det N V N Det Det N N the fridge repaired Peter the fridge Peter } Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 79 24

  57. From CFG to TAG: Example with adjunction tree rewriting Substitution: replace a non-terminal leaf with a tree Adjunction: replace a non-terminal node with an “auxiliary” tree S VP NP VP AP VP* Example derivation: V NP A S NP VP repaired easily V NP NP NP Det repaired Det N N the Peter fridge Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 80 24

  58. From CFG to TAG: Example with adjunction tree rewriting Substitution: replace a non-terminal leaf with a tree Adjunction: replace a non-terminal node with an “auxiliary” tree S VP NP VP AP VP* Example derivation: V NP A S NP VP repaired easily N V NP NP NP Det Peter repaired Det N N the Peter fridge Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 81 24

  59. From CFG to TAG: Example with adjunction tree rewriting Substitution: replace a non-terminal leaf with a tree Adjunction: replace a non-terminal node with an “auxiliary” tree S VP NP VP AP VP* Example derivation: S V NP A NP VP repaired easily N AP VP NP NP Peter A V NP Det Det N N easily repaired the Peter fridge Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 82 24

  60. From CFG to TAG: Example with adjunction tree rewriting Substitution: replace a non-terminal leaf with a tree Adjunction: replace a non-terminal node with an “auxiliary” tree S VP Example derivation: NP VP AP VP* S V NP A NP VP N AP VP repaired easily Peter A V NP NP NP Det Det N easily repaired Det N N the fridge Peter fridge Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 83 24

  61. From CFG to TAG: Example with adjunction tree rewriting Substitution: replace a non-terminal leaf with a tree Adjunction: replace a non-terminal node with an “auxiliary” tree S VP Example derivation: NP VP AP VP* S V NP A NP VP N AP VP repaired easily Peter A V NP NP NP Det Det N easily repaired Det N N the the fridge Peter fridge Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 84 24

  62. From CFG to TAG: Restrictions on adjunction ( I ) Restrictions on the shape of auxiliary trees: The root node and the footnode must carry the same non-terminal. Specific adjunction constraints on target nodes: obligatory adjunction (OA): true/false null adjunction (NA): no adjoinable auxiliary tree selective adjunction (SA): a nonempty set of adjoinable auxiliary trees Adjunction constraints are essential in generating non-context-free languages (e.g. the copy language { ww | w ∈ { a , b } ∗ } )! Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 85 25

  63. From CFG to TAG: Restrictions on adjunction ( I ) Example grammar for the copy language { ww | w ∈ { a , b } ∗ } : Example derivation of abbabb : S NA S NA S a S b S ε S* NA S* NA a b ⇒ TAG = TSG + adjunction + adjunction constraints Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 86 26

  64. From CFG to TAG: Restrictions on adjunction ( I ) Example grammar for the copy language { ww | w ∈ { a , b } ∗ } : Example derivation of abbabb : S NA S NA S a S b S S ε S* NA S* NA a b ε ⇒ TAG = TSG + adjunction + adjunction constraints Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 87 26

  65. From CFG to TAG: Restrictions on adjunction ( I ) Example grammar for the copy language { ww | w ∈ { a , b } ∗ } : Example derivation of abbabb : S NA S NA S NA S a S b S S a ε S* NA S* NA a b S NA a ε ⇒ TAG = TSG + adjunction + adjunction constraints Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 88 26

  66. From CFG to TAG: Restrictions on adjunction ( I ) Example grammar for the copy language { ww | w ∈ { a , b } ∗ } : Example derivation of abbabb : S NA S NA S NA S a S b S S a ε S* NA S* NA a b S NA a ε ⇒ TAG = TSG + adjunction + adjunction constraints Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 89 26

  67. From CFG to TAG: Restrictions on adjunction ( I ) Example grammar for the copy language { ww | w ∈ { a , b } ∗ } : Example derivation of abbabb : S NA S NA a S NA S NA S b S S S a b ε S NA b S* NA S* NA a b S NA a ε ⇒ TAG = TSG + adjunction + adjunction constraints Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 90 26

  68. From CFG to TAG: Restrictions on adjunction ( I ) Example grammar for the copy language { ww | w ∈ { a , b } ∗ } : Example derivation of abbabb : S NA S NA a S NA S NA S b S S S a b ε S NA b S* NA S* NA a b S NA a ε ⇒ TAG = TSG + adjunction + adjunction constraints Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 91 26

  69. From CFG to TAG: Restrictions on adjunction ( I ) Example grammar for the copy language { ww | w ∈ { a , b } ∗ } : Example derivation of abbabb : S NA S NA a S NA S NA S NA b S a S b S b S ε S NA b S* NA S* NA a b S NA b S NA a ε ⇒ TAG = TSG + adjunction + adjunction constraints Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 92 26

  70. From CFG to TAG: Tree-Adjoining Grammar A Tree Adjoining Grammar (TAG) is a tuple G = � N , T , I , A , O , C � : T and N are disjoint alphabets, the terminals and nonterminals, I is a finite set of intial trees , and A is a finite set of auxiliary trees . O : { v | v is a node in a tree in I ∪ A } → { 1 , 0 } is a function, and C : { v | v is a node in a tree in I ∪ A } → P ( A ) is a function. Let v be a node in I ∪ A : obligatory adjunction (OA): O ( v ) = 1 null adjunction (NA): O ( v ) = 0 and C ( v ) = ∅ selective adjunction (SA): O ( v ) = 0 and C ( v ) � ∅ and C ( v ) � A The trees in I ∪ A are called elementary trees. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 93 27

  71. From CFG to TAG: Tree-Adjoining Grammar TAG is mildly context-sensitive (MCS, Joshi 1985) generates the context-free languages generates cross-serial dependencies (i.e. WW ) constant growth (or semi linear, no a 2 n ) polynomial time parsing ( O ( n 6 ) ) (Schabes 1990; Joshi & Schabes 1997; Kallmeyer 2010) TAG can strongly lexicalize finitely ambiguous CFG. (Schabes 1990; Joshi & Schabes 1991) Formally interesting: a finite lexicalized grammar provides finitely many analyses for each string (finitely ambiguous). Linguistically interesting: syntactic properties of lexical items can be accounted for more directly. Computationally interesting: the search space during parsing can be delimited (grammar filtering). Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 94 28

  72. Outline of today’s course Why “working” with TAG? 1 Formal reasons Linguistic reasons From CFG to TAG 2 Context-Free Grammars Lexicalization Tree Substitution Grammars (TSG) Adding adjunction Further related formalisms 3 Summary & outlook 4 Appendix: NL and the generative capacity of grammar formalisms 5 Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 95 29

  73. Restricting TAG Further adjunction constraints: no adjunction at the spine below the root node of auxiliary trees off-spine TAG (osTAG, Swanson et al. (2013)) ⇒ WGC of CFG ( O ( n 3 ) ) ⇒ more compact grammars than CFG or TSG ⇒ strongly lexicalizes CFG? Restrictions on the shape of auxiliary trees: Footnodes are at the lef or right edge of an ET. Tree Insertion Grammar (TIG, Schabes & Waters (1995)) further constraint: no adjunction of lef auxiliary trees to the spine of right auxiliary trees ⇒ WGC of CFG ( O ( n 3 ) ) ⇒ more compact grammars than CFG (or TSG?) ⇒ strongly lexicalizes CFG Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 96 30

  74. MCS-alternatives to TAG and extensions Linear Indexed Grammar (LIG Gazdar 1988; Keller & Weir 1995) Head Grammar (HG Pollard 1984) Multicomponent TAG (MCTAG Seki et al. 1991) Minimalist Grammar (MG Stabler 1997) Combinatory Categorial Grammar (CCG Steedman 1984) Linear Context-Free Rewriting Systems (LCFRS Vijay-Shanker et al. 1987) TAG, CCG (but not recent versions of CCG), LIG and HG are weakly equivalent. MCTAG and LCFRS subsume TAG, CCG, LIG and HG. (Kallmeyer 2010) ⇒ TAG cannot generate all MCSLs! { a n b n c n d n e n | n ≥ 1 } , { www | w ∈ { a , b } ∗ } MIX : = { w | w ∈ { a , b , c } ∗ , | w | a = | w | b = | w | c } (Bach 1988) SCR ind : = { σ ( NP 1 , . . . , NP m ) V m . . . V 1 | m ≥ 1 and σ is a permutation } (Becker et al. 1992) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 97 31

  75. Outline of today’s course Why “working” with TAG? 1 Formal reasons Linguistic reasons From CFG to TAG 2 Context-Free Grammars Lexicalization Tree Substitution Grammars (TSG) Adding adjunction Further related formalisms 3 Summary & outlook 4 Appendix: NL and the generative capacity of grammar formalisms 5 Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 98 32

  76. Summary & outlook Summary motivation CFG → TSG → TSG+adjunction → TSG + adjunction + adjunction constraints = TAG Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 99 33

  77. Summary & outlook Summary motivation CFG → TSG → TSG+adjunction → TSG + adjunction + adjunction constraints = TAG Tomorrow linguistic applications using LTAG the derivation tree subcategorization, extraction, modification adding feature structures Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 100 33

Recommend


More recommend