goes 16 rgb training material some case studies over
play

GOES-16 RGB Training material: some case studies over South - PowerPoint PPT Presentation

GOES-16 RGB Training material: some case studies over South America Ester Ito, Natlia Rudorff, Diego Souza, Douglas Uba, Silvia Garcia, Daniel Villa, Renato Negri CPTEC/ INPE Tokyo, Japan 7-9 November 2017 Outline Overview of


  1. GOES-16 RGB Training material: some case studies over South America Ester Ito, Natália Rudorff, Diego Souza, Douglas Uba, Silvia Garcia, Daniel Villa, Renato Negri CPTEC/ INPE Tokyo, Japan 7-9 November 2017

  2. Outline  Overview of the training material being developed at CPTEC/INPE as VLab activity  Examples of some case studies selected for the training course

  3. Training Material  Covers basics concepts related to atmospheric radiation and remote sensing follows the WMO guidelines for  training operational meteorologists

  4. Training program for 2017 ‘"Training Access and Use of JPSS and GOES-R Imagery for Environmental  Applications" 28, May, 2017, Santos, SP, Face to face course at the Brazilian Symposium of Remote Sensing "Training on GOES-16 for Operational Meteorological Services", 20 to  31/10/2017, internal, face to face for CPTEC's operational meteorologists "Training on GOES-16 for Operational Meteorological Services", online for  national and regional meteorological services - to be given by December 2017, (using MOODLE). Extra:   Curso Iberoamericano de Meteorologia Satelital "Aplicaciones de imágenes y productos de satélites a la meteorología de latitudes medias", Santa Cruz de la Sierra, Bolívia, 25 de Setembro a 6 de Outubro, 2017.

  5. The Centres of Excellence (CoE) for training in Satellite Meteorology DSA/CPTEC/INPE uses the platform for online training courses Moodle. The developing RGB training course will be available in this platform.

  6. Module 1: Introduction to GOES-R and the benefits of the next generation environmental satellite for weather monitoring and forecast Details about the new generation  geostationary meteorological satellites GOES-16 plataform: focus on ABI and GLM  sensors Spectral, spatial and temporal resolution of  ABI data Examples of images and derived products  from ABI GLM sensor: benefits and potential aplications  on nowcasting, weather monitoring References training material for GOES-16 and  operational meteorology

  7. Module 2: Module 2: Advanced Baseline Imager spectral channels and applications for operational meteorology  Material was translated to spanish

  8. Module 3: Multichannel RGB composits: examples for operational meteorology -WMO Recomended RGBs - Case studies for South America

  9. First, the basics of color composition are discussed R: red (vermelho) Also, some color blindness test are applied to the students G: green (verde) B: blue (azul) + = red green yellow + = green blue cyan + = blue red m agenta

  10. RGB Natural Color The first RGB presented is the Natural Color, easiest to understand and discuss the color composition (previous slide). Recommended Range and Enhancement: Beam Channel Range Gamma NIR 1.6 Red ABI ch05 (NIR1.6) 0 …+100 % 1.0 Green ABI ch03 (VIS0.8) 0 ... +100 % 1.0 Blue ABI ch02 (VIS0.6) 0 ... +100 % 1.0 Ito, Negri, Uba 2017 Eumetsat “recipe” NIR 0.87 Ito, Negri, Uba 2017 VIS 0.64 Ito, Negri, Uba 2017 Ito, Negri, Uba 2017 10

  11. RGB Natural Color After comparison between Vis/IR isolated channels and the RGB, a discussion about targets spectral response BGR BGR BGR BGR BGR BGR CIRA Vlab

  12. RGB Natural Color – Interpretação e aplicação Nuvem oceano baixa EUMETSAT Interpretation Guide vegetação Nuvem neve baixa Cirrus solo fino Nuvem alta Nuvem oceano espessa baixa Ito, Negri, Uba 2017 Contribuição física de cada canal : Aplicações típicas : ‐ Diferenciar nuvens de água e de gelo NIR1.6 Espessura ótica, fase e (fase de nuvem) tamanho da partícula – informação da ‐ primeira impressão dos sistemas de gotícula de água, partícula grande e grande escala pequena de gelo ‐ detecção de neve/gelo VIS0.8 Espessura ótica, diferenças em ‐ identificar cobertura de solo vegetação – verde da vegetação - uso diurno VIS0.6 Espessura ótica, albedo – 12 informação da espessura da nuvem

  13. Cases selected for the training course  One strong cold airmass reaching Manaus-AM  One cyclogenesis  One cold front  One fog  One heavy snow over Argentina  Two recent severe weather events (TO DO)

  14. Case #1: 18/07/2017 Strong polar cold airmass over South America This cold airmass had reach Manaus-AM, located in the Amazon Rain forest 15

  15. Case #1: 18/07/2017 Massa de ar quente Strong cold airmass Massa de ar Nuvem quente baixa menos úmida Nuvem EUMETSAT Interpretation Guide média Corrente de jato/ Massa de ar Massa de ar seco/ polar Nível superior Elevada VP Nuvem alta espessa Ito, Negri, Uba 2017 Interpretando as contribuições…. Cor Canal/Dif.canais Pequena contribuição Grande contribuição Red WV6.2 – WV7.3 Úmido em níveis superiores Seco em níveis superiores GreenIR9.7 – IR10.3 Baixa tropopausa e alto ozônio Alta tropopausa e baixo ozônio Blue WV6.2 Seco em níveis superiores ou Úmido em níveis superiores ou alta TB (quente) baixa TB (frio)

  16. Evento 26/04/2017 Ciclogênese na América do Sul

  17. Ito, Negri, Uba 2017 18 RGB Airmass

  18. RGB Airmass 800hPa Warm conveyor belt Downdraft jet/ dry airmass/ high/med levels 700hPa B 800hPa 700hPa Cold conveyor belt 500hPa 500hPa 300hPa 19 Ito, Negri, Uba 2017

  19. GFS 2017 ‐ 04 ‐ 26 12:00UTC Wind + UR 500hPa 20 earth.nullschool.net

  20. Massa de ar RGB Airmass quente Massa de ar menos úmida quente Nuvem baixa Nuvem alta fina Corrente de jato/ Massa de ar seco/ Nível superior Elevada VP Nuvem média Nuvem alta espessa Massa de ar polar EUMETSAT Interpretation Guide Efeito de limbo/borda 21 Ito, Negri, Uba 2017

  21. Evento 03/08/2017 Sistema frontal 22 Divisão de Satélites e Sistemas Ambientais

  22. RGB Airmass Massa de ar quente Massa de ar quente menos úmida Nuvem Nuvem baixa média Nuvem média Corrente de jato/ Nuvem Massa de ar seco/ baixa Nuvem alta Nível superior espessa EUMETSAT Interpretation Guide Efeito de limbo/borda Massa de ar frio Ito, Negri, Uba 2017 23

  23. Ito, Negri, Uba 2017 24 RGB Airmass

  24. Ito, Negri, Uba 2017 25 RGB Airmass

  25. RGB Airmass Massa de ar quente menos úmida Massa de ar Nuvem quente baixa Corrente de jato/ Nuvem Massa de ar seco/ média Nível superior Nuvem alta espessa Efeito de EUMETSAT Interpretation Guide limbo/borda Massa de ar frio Ito, Negri, Uba 2017

  26. RGB Airmass 12 19 21 21 18 .. 18 18 10 8 17 15 10 19 15 9 14 15 22 13 ,’, 13 13 14 16 , , 16 . 10 . . 14 16 9 22 15 15 .. 8 14 4 22 4 Ito, Negri, Uba 2017

  27. RGB Airmass 800hPa Warm conveyor belt Downdraft jet stream/ dry airmass/ high ‐ med levels Cold conveyor belt 700hPa B 800hPa 700hPa 500hPa 500hPa 300hPa Ito, Negri, Uba 2017

  28. GFS 2017 ‐ 08 ‐ 03 12:00UTC Wind + UR 700hPa 29 earth.nullschool.net

  29. RGB Airmass Ito, Negri, Uba 2017 WV 6.9  m Ito, Negri, Uba 2017 WV 6.9  m 30 Divisão de Satélites e Sistemas Ambientais

  30. 31 Ito, Negri, Uba 2017 Low pressure system formation

  31. 32 Ito, Negri, Uba 2017 Low pressure system formation

  32. 33 Ito, Negri, Uba 2017 Low pressure system formation

  33. 34 Ito, Negri, Uba 2017 Low pressure system formation

  34. 35 Ito, Negri, Uba 2017 Low pressure system formation

  35. RGB Airmass WV 6.9  m Ito, Negri, Uba 2017 WV 6.9  m 36

  36. Fog Case 29 May 2017

  37. RGB Night Microphysics Fog/Stratus (case 20170529) 38

  38. RGB Night Microphysics Ito, Negri, Uba 2017 39

  39. RGB Night Microphysics – Fog/Stratus Recommended Range and Enhancement: Beam Channel Range Gamma Red IR 12.3 – IR 11.2 [-6 , 2] K 1.0 GreenIR 11.2 – IR 3.9 [-2 , 5] K 1.0 Blue IR 11.2 [243 , 293] K1.0 Eumetsat “recipe” Ito, Negri, Uba 2017 40

  40. Evento 18/06/2017 Nevasca na Patagônia 41

  41. Potential cases for severe weather/nowcasting 30/sep/2017 25/oct/2017

  42. Thank you for your attention ester.ito@ine.br natalia.rudorff@inpe.br diego.souza@cptec.inpe.br silvia.castro@inpe.br douglas.uba@inpe.br daniel.vila@inpe.br renato.galante@inpe.br Acknowledgements: WMO for funding the CPTEC/INPE participation in this workshop

Recommend


More recommend