gmres methods for least squares problems
play

GMRES Methods for Least Squares Problems Ken Hayami, Jun-Feng Yin, - PowerPoint PPT Presentation

GMRES Methods for Least Squares Problems Ken Hayami, Jun-Feng Yin, National Institute of Informatics, Tokyo and Tokushi Ito Business Design Laboratory Co.,Ltd., Nagoya HARRACHOV 2007 Computational Linear Algebra with Applications


  1. GMRES Methods for Least Squares Problems Ken Hayami, Jun-Feng Yin, National Institute of Informatics, Tokyo and Tokushi Ito Business Design Laboratory Co.,Ltd., Nagoya HARRACHOV 2007 Computational Linear Algebra with Applications Harrachov, Czech Republic August 23rd, 2007

  2. Problem: x ∈ R n � b − A x � 2 min A ∈ R m × n • m > n or m = n or m < n • not necessarily full rank • large sparse � A T A x = A T b (normal equation)

  3. For m < n AA T y = b , x = A T y ↓ minimum norm solution

  4. 1. Iterative methods using the normal equation A T A : square, symmetric, positive definite (if rank A = n ) matrix ↓ Apply Conjugate Gradient method. ↓ CGLS (Conjugate Gradient Least Squares) method

  5. The CGLS(CGNR) method Choose x 0 . r 0 = b − A x 0 , p 0 = s 0 = A T r 0 , γ 0 = � s 0 � 22 for i = 0 , 1 , 2 , . . . until γ i < ǫ q i = A p i α i = γ i / � q i � 22 x i +1 = x i + α i p i r i +1 = r i − α i q i s i +1 = A T r i +1 γ i +1 = � s i +1 � 22 β i = γ i +1 /γ i p i +1 = s i +1 + β i p i endfor

  6. However, condition number of A T A : square of A . ↓ Slow convergence Preconditioning necessary • diagonal scaling • incomplete Cholesky decomposition (Meijerink, van der Vorst ’77) • incomplete QR decomposition (Jennings, Ajiz ’84, Saad ’88) • incomplete Givens orthogonalization (Bai et al. ’01) • robust incomplete factorization (RIF) (Benzi, Tuma ’03) etc.

  7. 2. Iterative methods not based on the normal equation CR-LS( k ) method (Zhang and Oyanagi, ’89) Apply Orthomin( k ) method to x ∈ R n � b − A x � 2 min by introducing a mapping matrix B ∈ R n × m , and using the Krylov subspace generated by AB ∈ R m × m .

  8. Consider using GMRES (Generalized Minimal RESidual) method instead. GMRES: efficient and robust method for A x = b , where A ∈ R n × n : nonsingular.

  9. GMRES( k ) method Choose x 0 ∗ r 0 = b − A x 0 ; v 1 = r 0 / || r 0 || 2 for i = 1 , 2 , . . . , k w i = A v i for j = 1 , 2 , . . . , i h j,i = ( w i , v j ) w i = w i − h j,i v j end for h i +1 ,i = � w i � 2 v i +1 = w i /h i +1 ,i Find y i ∈ R i which minimizes � r i � 2 = � � r 0 � 2 e i − ¯ � � H i y � 2 . if � r i � 2 < ǫ then x i = x 0 + [ v 1 , . . . , v i ] y i ; stop endif endfor x k = x 0 + [ v 1 , . . . , v k ] y k x 0 = x k Go to ∗ .

  10. H i = ( h pq ) ∈ R ( i +1) × i , ( Here, ¯ e i = (1 , 0 , . . . , 0) T ∈ R i +1 . ) Minimizes � r k � 2 over x k = x 0 + � v 1 , · · · , v k � � v 1 , · · · , v k � = � r 0 , A r 0 , · · · , A k − 1 r 0 � ( v i , v j ) = δ ij k = ∞ : (full) GMRES. h i +1 ,i = 0 : breakdown When A : nonsingular, GMRES does not break down until it has found ∀ b , ∀ x 0 ∈ R n the solution of A x = b , (with in n steps).

  11. When A : singular, Theorem 1 (Brown, Walker ’97) GMRES determines a least squares solution of min x ∈ R n || b − A x || 2 without breakdown ∀ b , ∀ x 0 ∈ R n � R ( A ) = R ( A T ) . ✷ R ( M ): range space of M .

  12. How can we apply GMRES to the least squares problem x ∈ R n � b − A x � 2 min where A ∈ R m × n ? A ∈ R m × n , r 0 = b − A x 0 ∈ R m . ↓ Cannot create Krylov subspace by A × r 0 . Basically two ways to overcome by using a mapping matrix B ∈ R n × m .

  13. 1. AB-GMRES method Use Krylov subspace: K k ( AB, r 0 ) := � r 0 , AB r 0 , . . . , ( AB ) i − 1 r 0 � in R m . AB ∈ R m × m . (cf. CR-LS( k ) method by Zhang, Oyanagi)

  14. First note: Lemma 2 ∀ b ∈ R m x ∈ R n || b − A x || 2 = min min z ∈ R m || b − AB z || 2 � R ( A ) = R ( AB ) ✷

  15. Using Lemma 3 R ( AA T ) = R ( A ) ✷ we can show R ( A T ) = R ( B ) = Lemma 4 ⇒ R ( A ) = R ( AB ) . ✷

  16. Thus, assume R ( A ) = R ( AB ) . Consider solving z ∈ R m || b − AB z || 2 = min x ∈ R n || b − A x || 2 min using GMRES with initial approximation z 0 ∈ R m ; AB z 0 = A x 0 . Then, we have the following.

  17. AB-GMRES( k ) method Choose x 0 (; A x 0 = AB z 0 ). ∗ r 0 = b − A x 0 (= b − AB z 0 ); v 1 = r 0 / || r 0 || 2 for i = 1 , 2 , . . . , k w i = AB v i for j = 1 , 2 , . . . , i h j,i = ( w i , v j ) w i = w i − h j,i v j end for h i +1 ,i = � w i � 2 v i +1 = w i /h i +1 ,i Find y i ∈ R i which minimizes � r i � 2 = � � r 0 � 2 e i − ¯ � � H i y � 2 x i = x 0 + B [ v 1 , . . . , v i ] y i r i = b − A x i if � A T r i � 2 < ǫ stop endfor x 0 = x k Go to ∗ .

  18. Does the AB-GMRES method determine the least squares solution without breakdown ? Recall the following. Theorem 5 (Brown, Walker ’97) A ∈ R m × m . Then, the following holds. Let ˜ The GMRES method determines z ∈ R m || b − ˜ a least squares solution of min A z || 2 ∀ b ∈ R m , ∀ z 0 ∈ R m without breakdown � R ( ˜ A ) = R ( ˜ A T ) . ✷

  19. Let ˜ A := AB . Noting If R ( A T ) = R ( B ) , then Theorem 6 R ( AB ) = R ( B T A T ) ⇐ ⇒ R ( A ) = R ( B T ) ✷ we obtain Theorem 7 If R ( A T ) = R ( B ) , then AB-GMRES method determines a least squares solution of min x ∈ R n || b − A x || 2 ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown � R ( A ) = R ( B T ) . ✷

  20. Corollary 8 R ( A T ) = R ( B ) , R ( A ) = R ( B T ) ⇓ AB-GMRES method determines a least squares solution of min x ∈ R n || b − A x || 2 ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown. ✷ Remark 1 R ( A ) = R ( B T ) ⇑ B T = AC T ; C T : nonsingular � B = CA T ; C : nonsingular.

  21. 2. BA-GMRES method The other alternative: Use a matrix B ∈ R n × m to map r 0 ∈ R m to ˜ r 0 = B r 0 ∈ R n . Then create Krylov subspace r 0 , . . . , ( BA ) i − 1 ˜ r 0 � in R n . � ˜ r 0 , BA ˜ BA ∈ R n × n

  22. First note: Theorem 9 � b − A x ∗ � 2 = min x ∈ R n � b − A x � 2 and � B b − BA x ∗ � 2 = min x ∈ R n � B b − BA x � 2 are equivalent for all b ∈ R m � R ( A ) = R ( B T BA ) .

  23. Also note Lemma 10 R ( A ) = R ( B T ) = ⇒ R ( BA ) = R ( B ) . Lemma 11 ⇒ R ( B T BA ) = R ( B T ) . R ( BA ) = R ( B ) = Lemma 12 R ( A ) = R ( B T ) = ⇒ R ( A ) = R ( B T BA ) .

  24. Thus, assume R ( A ) = R ( B T BA ), and consider applying GMRES( k ) method to x ∈ R n || B b − BA x || 2 min with initial approximation x 0 .

  25. BA-GMRES( k ) method Choose x 0 . ∗ ˜ r 0 = B ( b − A x 0 ) r 0 / || ˜ r 0 || 2 v 1 = ˜ for i = 1 , 2 , . . . , k until convergence w i = BA v i for j = 1 , 2 , . . . , i h j,i = ( w i , v j ) w i = w i − h j,i v j end for h i +1 ,i = � w i � 2 v i +1 = w i /h i +1 ,i Find y i ∈ R i which minimizes � ˜ � � ˜ r 0 � 2 e i − ¯ r i � 2 = � � H i y � 2 x i = x 0 + [ v 1 , . . . , v i ] y i r i = b − A x i if � A T r i � 2 < ǫ stop end for Go to ∗ .

  26. Does BA-GMRES method give the least squares solution without breakdown ? Noting Theorem 13 If R ( A ) = R ( B T ) , then R ( BA ) = R ( A T B T ) ⇐ ⇒ R ( A T ) = R ( B ) . ✷

  27. Theorem 14 If R ( A ) = R ( B T ) , then BA-GMRES method determines x ∈ R m || b − A x || 2 a least squares solution of min ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown � R ( A T ) = R ( B ) . ✷ Corollary 15 R ( A ) = R ( B T ) , R ( A T ) = R ( B ) ⇓ BA-GMRES method determines a least squares solution of x ∈ R m || b − A x || 2 min ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown. ✷

  28. Summary on condition for B General case : rank A ≤ min( m, n ), R ( A ) = R ( B T ) , R ( A T ) = R ( B ) ⇓ AB-GMRES, BA-GMRES methods give x ∈ R m || b − A x || 2 a least squares solution of min ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown. · · · e.g. Let B = αA T where 0 � = α ∈ R .

  29. Full rank case m ≥ n = rank A ( over-determined case ) Let B = CA T where C ∈ R n × n :nonsingular ( B, A T ∈ R n × m ). ⇓ B T = AC T ⇓ R ( A ) = R ( B T ) . ⇓ n = rank A T = rank A = rank B T = rank B ⇓ R ( A T ) = R ( B ) = R n . Since AB ∈ R m × m , BA ∈ R n × n , m ≥ n , use BA-GMRES method. e.g. Let C := { diag( A T A ) } − 1 i.e. BA = { diag( A T A ) } − 1 A T A .

  30. Convergence Analysis Theorem 16 Let A ∈ R m × n , m ≥ n, B := CA T , C ∈ R n × n : sym.pos.def., 1 σ i (1 ≤ i ≤ n ) : singular values of ˜ A := AC 2 . Then, σ 2 i (1 ≤ i ≤ n ) : eigenvalues of AB and BA . If m > n , all other eigenvalues of AB are 0 .

  31. [Proof] 1 2 = U Σ V T : SVD, Let ˜ A := AC U ∈ R m × m , V ∈ R n × n : orthogonal matrices, ⎡ ⎤ σ 1 ... 0 ⎢ ⎥ ⎢ ⎥ ∈ R m × n , ⎢ ⎥ Σ = σ n ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ 0 σ 1 ≥ . . . ≥ σ n ≥ 0 : singular values of ˜ A . Then, AB = ACA T = ˜ A T = U ΣΣ T U T , A ˜ 1 AC − 1 1 1 A T ˜ 2 V ) − 1 . BA = CA T A = C 2 ˜ 2 V Σ T Σ( C 2 = C cf. If rank A = n, C := { diag( A T A ) } − 1 : sym.pos.def. Similarly for RIF.

  32. Theorem 17 The residual r = b − A x achieved by the k -th step of AB-GMRES satisfies � k � σ 1 − σ n � r k | R ( A ) � 2 ≤ 2 � r 0 | R ( A ) � 2 . σ 1 + σ n Theorem 18 The residual r = b − A x achieved by the k -th step of BA-GMRES satisfies � k � σ 1 − σ n � � B r k � 2 = � CA T r k � 2 ≤ 2 κ ( C ) � B r 0 � 2 . σ 1 + σ n

Recommend


More recommend