GMRES Methods for Least Squares Problems Ken Hayami, Jun-Feng Yin, National Institute of Informatics, Tokyo and Tokushi Ito Business Design Laboratory Co.,Ltd., Nagoya HARRACHOV 2007 Computational Linear Algebra with Applications Harrachov, Czech Republic August 23rd, 2007
Problem: x ∈ R n � b − A x � 2 min A ∈ R m × n • m > n or m = n or m < n • not necessarily full rank • large sparse � A T A x = A T b (normal equation)
For m < n AA T y = b , x = A T y ↓ minimum norm solution
1. Iterative methods using the normal equation A T A : square, symmetric, positive definite (if rank A = n ) matrix ↓ Apply Conjugate Gradient method. ↓ CGLS (Conjugate Gradient Least Squares) method
The CGLS(CGNR) method Choose x 0 . r 0 = b − A x 0 , p 0 = s 0 = A T r 0 , γ 0 = � s 0 � 22 for i = 0 , 1 , 2 , . . . until γ i < ǫ q i = A p i α i = γ i / � q i � 22 x i +1 = x i + α i p i r i +1 = r i − α i q i s i +1 = A T r i +1 γ i +1 = � s i +1 � 22 β i = γ i +1 /γ i p i +1 = s i +1 + β i p i endfor
However, condition number of A T A : square of A . ↓ Slow convergence Preconditioning necessary • diagonal scaling • incomplete Cholesky decomposition (Meijerink, van der Vorst ’77) • incomplete QR decomposition (Jennings, Ajiz ’84, Saad ’88) • incomplete Givens orthogonalization (Bai et al. ’01) • robust incomplete factorization (RIF) (Benzi, Tuma ’03) etc.
2. Iterative methods not based on the normal equation CR-LS( k ) method (Zhang and Oyanagi, ’89) Apply Orthomin( k ) method to x ∈ R n � b − A x � 2 min by introducing a mapping matrix B ∈ R n × m , and using the Krylov subspace generated by AB ∈ R m × m .
Consider using GMRES (Generalized Minimal RESidual) method instead. GMRES: efficient and robust method for A x = b , where A ∈ R n × n : nonsingular.
GMRES( k ) method Choose x 0 ∗ r 0 = b − A x 0 ; v 1 = r 0 / || r 0 || 2 for i = 1 , 2 , . . . , k w i = A v i for j = 1 , 2 , . . . , i h j,i = ( w i , v j ) w i = w i − h j,i v j end for h i +1 ,i = � w i � 2 v i +1 = w i /h i +1 ,i Find y i ∈ R i which minimizes � r i � 2 = � � r 0 � 2 e i − ¯ � � H i y � 2 . if � r i � 2 < ǫ then x i = x 0 + [ v 1 , . . . , v i ] y i ; stop endif endfor x k = x 0 + [ v 1 , . . . , v k ] y k x 0 = x k Go to ∗ .
H i = ( h pq ) ∈ R ( i +1) × i , ( Here, ¯ e i = (1 , 0 , . . . , 0) T ∈ R i +1 . ) Minimizes � r k � 2 over x k = x 0 + � v 1 , · · · , v k � � v 1 , · · · , v k � = � r 0 , A r 0 , · · · , A k − 1 r 0 � ( v i , v j ) = δ ij k = ∞ : (full) GMRES. h i +1 ,i = 0 : breakdown When A : nonsingular, GMRES does not break down until it has found ∀ b , ∀ x 0 ∈ R n the solution of A x = b , (with in n steps).
When A : singular, Theorem 1 (Brown, Walker ’97) GMRES determines a least squares solution of min x ∈ R n || b − A x || 2 without breakdown ∀ b , ∀ x 0 ∈ R n � R ( A ) = R ( A T ) . ✷ R ( M ): range space of M .
How can we apply GMRES to the least squares problem x ∈ R n � b − A x � 2 min where A ∈ R m × n ? A ∈ R m × n , r 0 = b − A x 0 ∈ R m . ↓ Cannot create Krylov subspace by A × r 0 . Basically two ways to overcome by using a mapping matrix B ∈ R n × m .
1. AB-GMRES method Use Krylov subspace: K k ( AB, r 0 ) := � r 0 , AB r 0 , . . . , ( AB ) i − 1 r 0 � in R m . AB ∈ R m × m . (cf. CR-LS( k ) method by Zhang, Oyanagi)
First note: Lemma 2 ∀ b ∈ R m x ∈ R n || b − A x || 2 = min min z ∈ R m || b − AB z || 2 � R ( A ) = R ( AB ) ✷
Using Lemma 3 R ( AA T ) = R ( A ) ✷ we can show R ( A T ) = R ( B ) = Lemma 4 ⇒ R ( A ) = R ( AB ) . ✷
Thus, assume R ( A ) = R ( AB ) . Consider solving z ∈ R m || b − AB z || 2 = min x ∈ R n || b − A x || 2 min using GMRES with initial approximation z 0 ∈ R m ; AB z 0 = A x 0 . Then, we have the following.
AB-GMRES( k ) method Choose x 0 (; A x 0 = AB z 0 ). ∗ r 0 = b − A x 0 (= b − AB z 0 ); v 1 = r 0 / || r 0 || 2 for i = 1 , 2 , . . . , k w i = AB v i for j = 1 , 2 , . . . , i h j,i = ( w i , v j ) w i = w i − h j,i v j end for h i +1 ,i = � w i � 2 v i +1 = w i /h i +1 ,i Find y i ∈ R i which minimizes � r i � 2 = � � r 0 � 2 e i − ¯ � � H i y � 2 x i = x 0 + B [ v 1 , . . . , v i ] y i r i = b − A x i if � A T r i � 2 < ǫ stop endfor x 0 = x k Go to ∗ .
Does the AB-GMRES method determine the least squares solution without breakdown ? Recall the following. Theorem 5 (Brown, Walker ’97) A ∈ R m × m . Then, the following holds. Let ˜ The GMRES method determines z ∈ R m || b − ˜ a least squares solution of min A z || 2 ∀ b ∈ R m , ∀ z 0 ∈ R m without breakdown � R ( ˜ A ) = R ( ˜ A T ) . ✷
Let ˜ A := AB . Noting If R ( A T ) = R ( B ) , then Theorem 6 R ( AB ) = R ( B T A T ) ⇐ ⇒ R ( A ) = R ( B T ) ✷ we obtain Theorem 7 If R ( A T ) = R ( B ) , then AB-GMRES method determines a least squares solution of min x ∈ R n || b − A x || 2 ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown � R ( A ) = R ( B T ) . ✷
Corollary 8 R ( A T ) = R ( B ) , R ( A ) = R ( B T ) ⇓ AB-GMRES method determines a least squares solution of min x ∈ R n || b − A x || 2 ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown. ✷ Remark 1 R ( A ) = R ( B T ) ⇑ B T = AC T ; C T : nonsingular � B = CA T ; C : nonsingular.
2. BA-GMRES method The other alternative: Use a matrix B ∈ R n × m to map r 0 ∈ R m to ˜ r 0 = B r 0 ∈ R n . Then create Krylov subspace r 0 , . . . , ( BA ) i − 1 ˜ r 0 � in R n . � ˜ r 0 , BA ˜ BA ∈ R n × n
First note: Theorem 9 � b − A x ∗ � 2 = min x ∈ R n � b − A x � 2 and � B b − BA x ∗ � 2 = min x ∈ R n � B b − BA x � 2 are equivalent for all b ∈ R m � R ( A ) = R ( B T BA ) .
Also note Lemma 10 R ( A ) = R ( B T ) = ⇒ R ( BA ) = R ( B ) . Lemma 11 ⇒ R ( B T BA ) = R ( B T ) . R ( BA ) = R ( B ) = Lemma 12 R ( A ) = R ( B T ) = ⇒ R ( A ) = R ( B T BA ) .
Thus, assume R ( A ) = R ( B T BA ), and consider applying GMRES( k ) method to x ∈ R n || B b − BA x || 2 min with initial approximation x 0 .
BA-GMRES( k ) method Choose x 0 . ∗ ˜ r 0 = B ( b − A x 0 ) r 0 / || ˜ r 0 || 2 v 1 = ˜ for i = 1 , 2 , . . . , k until convergence w i = BA v i for j = 1 , 2 , . . . , i h j,i = ( w i , v j ) w i = w i − h j,i v j end for h i +1 ,i = � w i � 2 v i +1 = w i /h i +1 ,i Find y i ∈ R i which minimizes � ˜ � � ˜ r 0 � 2 e i − ¯ r i � 2 = � � H i y � 2 x i = x 0 + [ v 1 , . . . , v i ] y i r i = b − A x i if � A T r i � 2 < ǫ stop end for Go to ∗ .
Does BA-GMRES method give the least squares solution without breakdown ? Noting Theorem 13 If R ( A ) = R ( B T ) , then R ( BA ) = R ( A T B T ) ⇐ ⇒ R ( A T ) = R ( B ) . ✷
Theorem 14 If R ( A ) = R ( B T ) , then BA-GMRES method determines x ∈ R m || b − A x || 2 a least squares solution of min ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown � R ( A T ) = R ( B ) . ✷ Corollary 15 R ( A ) = R ( B T ) , R ( A T ) = R ( B ) ⇓ BA-GMRES method determines a least squares solution of x ∈ R m || b − A x || 2 min ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown. ✷
Summary on condition for B General case : rank A ≤ min( m, n ), R ( A ) = R ( B T ) , R ( A T ) = R ( B ) ⇓ AB-GMRES, BA-GMRES methods give x ∈ R m || b − A x || 2 a least squares solution of min ∀ b ∈ R m , ∀ x 0 ∈ R n without breakdown. · · · e.g. Let B = αA T where 0 � = α ∈ R .
Full rank case m ≥ n = rank A ( over-determined case ) Let B = CA T where C ∈ R n × n :nonsingular ( B, A T ∈ R n × m ). ⇓ B T = AC T ⇓ R ( A ) = R ( B T ) . ⇓ n = rank A T = rank A = rank B T = rank B ⇓ R ( A T ) = R ( B ) = R n . Since AB ∈ R m × m , BA ∈ R n × n , m ≥ n , use BA-GMRES method. e.g. Let C := { diag( A T A ) } − 1 i.e. BA = { diag( A T A ) } − 1 A T A .
Convergence Analysis Theorem 16 Let A ∈ R m × n , m ≥ n, B := CA T , C ∈ R n × n : sym.pos.def., 1 σ i (1 ≤ i ≤ n ) : singular values of ˜ A := AC 2 . Then, σ 2 i (1 ≤ i ≤ n ) : eigenvalues of AB and BA . If m > n , all other eigenvalues of AB are 0 .
[Proof] 1 2 = U Σ V T : SVD, Let ˜ A := AC U ∈ R m × m , V ∈ R n × n : orthogonal matrices, ⎡ ⎤ σ 1 ... 0 ⎢ ⎥ ⎢ ⎥ ∈ R m × n , ⎢ ⎥ Σ = σ n ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ 0 σ 1 ≥ . . . ≥ σ n ≥ 0 : singular values of ˜ A . Then, AB = ACA T = ˜ A T = U ΣΣ T U T , A ˜ 1 AC − 1 1 1 A T ˜ 2 V ) − 1 . BA = CA T A = C 2 ˜ 2 V Σ T Σ( C 2 = C cf. If rank A = n, C := { diag( A T A ) } − 1 : sym.pos.def. Similarly for RIF.
Theorem 17 The residual r = b − A x achieved by the k -th step of AB-GMRES satisfies � k � σ 1 − σ n � r k | R ( A ) � 2 ≤ 2 � r 0 | R ( A ) � 2 . σ 1 + σ n Theorem 18 The residual r = b − A x achieved by the k -th step of BA-GMRES satisfies � k � σ 1 − σ n � � B r k � 2 = � CA T r k � 2 ≤ 2 κ ( C ) � B r 0 � 2 . σ 1 + σ n
Recommend
More recommend