B iomass-burning 15 A erosols & 18 March 2013 background molecules + ice crystals S tratocumulus Height (km) 10 Mean ± 1σ E nvironment: L ifecycles & 5 background molecules + aerosols λ = 532nm In teractions Doi Angkhang site (Counts km 2 µ J -1 µ s -1 ) 0 0.0 0.5 1.0 1.5 2.0 2.5 E xperiment Normalized Relative Backscatter Satellite-surface perspectives of air quality and aerosol-cloud effects on the environment: 2013-2015 An overview of 7-SEAS/BASELInE NASA: S.-C. Tsay , N. C. Hsu, B. N. Holben, E. J. Welton Taiwan: led by N.-H. George Lin (NCU) Thailand: led by S. Janjai (SU) and by S. Chantara (CMU) Vietnam: led by Anh X. Nguyen (IGP-VAST)
Global frequency distribution of Smoke in the presence of Clouds* Aug. 2007-2015, 5 ° x 5 ° CALIOP: SCAR-B Aqua/MODIS: 532 nm Attenuated 1995-1996 Terra/MODIS Backscatter (km -1 sr -1 ) 4 August 2007 25 Feb. 2000 Recirculative Gyre TOMS data: 1997-2001 Frequency Day/Year • West coast of California: Ship tracks, a small-scale aerosol-cloud interaction • South America: Convective “ fumulus ” clouds, diurnal cycle plays important role • Southern Africa: Distinct, decoupled aerosol-cloud layers over west coast • Southeast Asia: Upwind smoke and downwind coupled-aerosol-cloud system *Tsay, Hsu, Lau, et al., 2013, Atmos. Environ., 78, 20-34.
7-SEAS (2013) special issue, Atmospheric Environment (28/37>75%) 7-SEAS (2017) special issue, Aerosol & Air Quality Res. (27/46>58%)
L1/EPIC 7-SEAS/BASELInE: a baseline Strategy* GEO/AHI, ABI … CloudSat CALIPSO Aqua : MPLNET Terra : AERONET : Radiometer : Chemistry : Mobile Labs *Tsay, Maring, Lin, et al., 2017, Aerosol & Air Quality Research, in review. Si-Chee Tsay, Deputy September 21, 2016 EOS/Terra Project Scientist NASA/GSFC
Surface-based Mobile Atmospheric SMARTLabs : Research & Testbed Laboratories 2011 2001 2003 DISCOVER-AQ ACE-Asia DOE/ARM EAST-AIRE IPHEx 2014 Aerosol IOP 2005 RAJO-MEGHA 2002 NAMMA 2009 CRYSTAL 2006 UAE 2 CHINA 2 - PRIDE BASE-ASIA -FACE 2004 AMY 2008 2000 2006 7-SEAS SAFARI 2010-15 2000 http://smartlabs.gsfc.nasa.gov/ Terra/MODIS Product • Small Operations (2-3 operators/scientists), yet Cost-Effective: over 10 countries on 3 continents for aerosol-cloud-radiation studies • Achievements: >80 SMARTLabs publications since 2000 & many in process for the spring 2010-2015 7-SEAS deployments • Future Missions: Cal/Val for S-NPP, GPM, …, and EV deployments
SMART : Surface-sensing Measurements for Atmospheric Radiative Transfer (in mini-Network mode) • Better understanding of excess solar absorption • Spectral Derivatives: partitioning subvisual cirrus & aerosols • Lagrange-/DRAGON-like network deployment with AERONET e-Pandora Spectrometer (280-800 nm) Pyranometer GPS Pyrgeometer Pressure Sensor 1.0 Spectral Irradiance (Wm -2 nm -1 ) Products: Applying Ideal Gas Law: • Ji and Tsay, 2010: A novel non-intrusive 0.8 • O 3 , NO 2 method to resolve the thermal-dome- • Cirrus ( τ ) 0.6 Cirrus (m) effect of pyranometers: Instrumentation Cirrus (o) Aerosol (m) • Aerosols ( τ ) and observational basis , JGR., 115, D00K21 . Aerosol (o) 0.4 • TDE-corrected • Ji, Tsay, et al ., 2011: ----- Radiometric cali- solar irradiance 0.2 bration and implication , JGR., 116, D24105 . • Terrestrial • Tsay, et al ., 2016: ----- From the lab to field 0.0 350 400 450 500 550 600 650 700 750 irradiance measurements , to be submitted. Wavelength (nm) • Hansell, Tsay, et al., 2014, Spectral derivative analysis of solar spectroradiometric measurements: Theoretical basis, JGR, 119, 8908-8924.
COMMIT : Chemical, Optical & Microphysical Measurements of In-situ Troposphere Aerosol ( & Precursor) CCN Hygroscopicity/Growth Factor* , ^ Optical: Neph (Wet/Dry) Microphysical: SMPS (Wet/Dry) Activation ( κ ): f (Size, Comp, SS) Host >25 instruments • Trace gas (CO, CO 2 , SO 2 , NO x /NO y , and O 3 ) concentrations; • PM 1 , PM 2.5 , PM 10 mass concentration; • 3λ -light (RGB) extinction; 3λ - & 7λ -light absorption; • 3λ -light scattering, in series operation for dry/wet conditions; • Ambient size distribution (TSI/FMPS and TSI/APS); • Wet/dry size distribution, in parallel operation (TSI/SMPS); • Aerosol activation (DMT/CCN counter). *Hsiao, Tsay, et al., 2016, Aero. Air Qual. Res., doi:10.4209/aaqr.2015.07.0447 . ^Pantina, Tsay, et al., 2016, Aero. Air Qual. Res., doi:10.4209/aaqr.2015.011.0630 .
ACHIEVE : Aerosol-Cloud-Humidity Interaction Exploring & Validating Enterprise W-band 94 GHz Calibration tower pulsed radar NEΔR = -55 dBz Corner-cube reflector SCR = 36 dB X-band 10 GHz Mast FM-CW rotator e-Pandora radar 280-800 nm ~30m K-band Ceilometer All-sky 24 GHz 910 nm imager FM-CW radar Atmospheric emitted radiance interferometer 7-channel scanning microwave (AERI, 3-20 µm) radiometer (SMiR, 19-89GHz) Products: • Cloud Optics/Radiation : zenith downwelling radiance (UV – µwave), linear depolarization, reflectivity profile • Cloud Microphysics : thermodynamic phase, water content, cloud-base/top/height, cloud fraction, Doppler fall- velocity, ice/liquid particle size (non-precipitation)
7-SEAS/BASELInE Data Products SMARTLabs/AERONET/MPLNET Regional Instrumentation* Organic Carbon (OC): OC 1 (120 C), OC 2 (280 C), Trace Gas – Column : O 3 , NO 2 , SO 2 , HCHO, CO, H 2 O; OC 3 (480 C), OC 4 (580 C), OP (pyrolyzed organic – Surface : CO, CO 2 , O 3 , SO 2 , NO, NOx/NOy; – Profile : NO 2 , (O 3 in progress) carbon, e.g., anhydrosugars, dicarboxylic acids) Elemental Carbon (EC): EC 1 (580 C – OP), EC 2 Aerosol Optical Thickness : multi-spectral from UV to (740 C), EC 3 (840 C) shortwave-IR, dust at longwave-IR, and extinction profile Water soluble ions : Na + , NH 4 + , K + , Mg 2+ , Ca 2+ , Cl - Aerosol Microphysics/Chemistry : size, mass, type, - , SO 4 2- , nss-SO 4 2- , NO 2- , F - CCN, hygroscopicity, scattering/absorption/extinction , NO 3 Cloud Optical Thickness : multi-spectral from visible to Toxic : Mercury, PCDD/Fs (dioxin) longwave-IR Cloud Microphysics : size, liquid-/ice-water content, Metal : Ti, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Sb, cloud-base/top/height, thermodynamic phase, Doppler Tl, Pb, V, Cr, As, Y, Se, Zr, Nb, Ge, Rb, Cs, Ga, La, fall-velocity, depolarization and reflectivity profiles Ce, Pr, Nd, Sm, Eu, Gd UV radiation: spectral UV (erythemal) irradiance Radiation Flux : surface solar and terrestrial irradiance Meteorology : P, T, RH, wind, mixed-layer height, Supplementary data : sounding profile, sky image, precipitation, visibility particle spectroscopy/morphology, rainfall amount …( aeronet ) …( mplnet )… *nhlin@cc.ncu.edu.tw http://smartlabs.gsfc.nasa.gov
X-band W-band Calibration tower 10 GHz 94 GHz K-band FM-CW pulsed 24 GHz radar radar FM-CW radar All-sky imager Ceilometer 910 nm Atmospheric emitted radiance interferometer (AERI, 3-20 µm) CloudSat W-band reflectivity (a) (b) (c) 6:35 UTC 1 st deployment: 7-SEAS/BASELInE, Spring 2013 At the Yen Bai supersite, ACHIEVE instrument setup for (a) AERONET/Cimel sun-sky spectroradiometer with polarization for cloud-mode operations, (b) the ACHIEVE 6:33 UTC mobile laboratory in action, and (c) a 18.4m high corner- cube (6.4-inch inner dimension) calibration tower, located at the west bank of the Red River, Vietnam, and 370m to ACHIEVE W-band reflectivity the ACHIEVE radars.
15 2.0 7 April 2013: Yen Bai, Vietnam* 10 Encroachment of stratocumulus deck Height (km) 5 RHI & PPI RHI & PPI RHI & PPI RHI & PPI Reflectivity (dBZ) 1.5 0 -5 -10 1.0 -15 Cloud deck -20 development Drizzle -25 0.5 formation Light precipitation -30 Time (UTC +7=Local ) -35 13:36 14:48 16:00 17:11 18:22 19:35 0.0 -40 10 4 Droplet Concentration (#cm -3 µm -1 ) 14 0 n - 1 Drizzle Formation Rate (#s -1 m -3 ) 0 æ ö æ ö D exp - D GCE with fully prognostic 3M-PSD: simulated W-band radar reflectivity by varying CCNs 1 1 n ( D ) = N t f gam ( D ) = N t 10 2 ç ÷ ç ÷ 12 0 0 D m =10µm G ( n ) 2. è D n ø D n è D n ø 10 0 0 10 Height (km) 0 0 N t =100cm -3 1. 10 -2 narrower = 1.0 8 5 0 0 n Cloud WC 10 -4 = 2.5 Drizzle WC (10 -3 gm -3 ) 1. n (10 -5 gm -3 ) 6 = 4.0 0 0 0 10 -6 n = 6.0 (b) CCN: surface(600) 4km(100) cm -3 (a) CCN surface 4km: 100 cm -3 (c) CCN: surface(1500) 4km(100) cm -3 n 4 0. 0 0 10 -8 = 9.0 14 15 16 17 14 15 16 17 5 14 15 16 17 D m =12µm D m =20µm n • = 14. 2 As CCN increases, cloud droplet sizes decrease, number concentrations increase, cloud 10 -10 0 0 n spectral width water content and integrated LWP increase; drizzle suppressed. 10 -12 0 0 0 0 5 10 15 20 25 30 35 0 0 10 10 20 20 30 30 40 40 0 10 20 30 40 50 • Simulated reflectivity decreases with increasing CCN owing to more numerous smaller Mean Mass Diameter, D m (µm) Droplet Diameter (µm) *Loftus, Tsay, et al., 2016, AAQR, doi:10.4209/aaqr.2015.11.0631 . droplets and suppressed drizzle development.
Recommend
More recommend