Glacier Hydrology Ian Hewitt, University of Oxford hewitt@maths.ox.ac.uk
Water sources - Basal melting - Surface melting, precipitation Subglacial hydrology - Sheet flow - Tunnels / channels - Cavities - Canals - Lakes Large-scale models
Glacier hydrology Accumulation Surface melting (runoff) u s Internal creep u b Basal melting / freezing ‘Sliding’
Thermal setting ⇠ ⇠ T T m T T m ⇠ T T m Basal freezing Basal melting Frozen bed (no sliding?) ) G ⇠ 0 . 06 W m � 2 Geothermal heating Basal melting ⇠ m ⇠ 10 mm y � 1 ⌧ b ⇠ 100 kPa = ⌧ b u b ⇠ 0 . 1 W m � 2 Frictional heating u b ⇠ 30 m y � 1
Water sources in Antarctica Basal melting ~ 10 mm/y mm/y Pattyn 2010
Water sources in Greenland Basal melting ~ 10 mm/y Surface runoff ~ 1 m/y mm yr -1 van den Broeke et al 2016 Aschwanden et al 2012
Direction of subglacial water flow Z s H α Hydraulic potential Z b ⇤ φ = ρ w gZ b + p w in terms of effective pressure φ = ρ w gZ b + ρ i g ( Z s � Z b ) � N N = p i − p w � ∂ x ∂ x ∂ x = Ψ + ∂ N � ∂φ Potential gradient Ψ = ρ i g tan α + ( ρ w � ρ i ) g tan θ ∂ x − Potential gradient if water pressure were at overburden N = 0 Predominant control on water flow direction from surface slope
Subglacial drainage systems Kamb & LaChapelle 1964, Lliboutry 1968, Walder & Hallet Röthlisberger 1972, 1979, Nye 1976 Alley et al 1986, Creyts & Schoof 2009 Walder & Fowler 1994 Increasing water flow
Weertman film Weertman 1972, Walder 1982 Weertman suggested water could flow as a film ✓ ◆ h Q = h 3 ✓ ◆ Ψ + ∂ N Poiseuille flux 12 µ ∂ x Water flow dissipates energy through heating Leads to an instability � Larger h Larger flux Melting of ice roof Flow wants to concentrate in localized channels / tunnels However, a patchy film may still exist eg. Alley 1989, Creyts & Schoof 2009
Röthlisberger channels Röthlisberger 1972, Nye 1976 Ice wall melting is counteracted by viscous creep Creep N = p i − p w = p i � p w Melting Röthlisberger/Nye theory (ignoring pressure dependence of melting temperature) ∂ t ∂ s ρ w ∂ S ∂ t + ∂ Q ∂ x = m water mass conservation + M Steady state ρ w ∂ S ∂ t = m � ˜ ASN n wall evolution ! 1 /n K 3 / 4 ρ i Ψ 11 / 8 n Q 1 / 4 n c N ⇡ ρ i L ˜ A ✓ ◆ ✓ ◆ Ψ + ∂ N local energy conservation mL = Q ∂ x Effective pressure INCREASES ◆ 1 / 2 momentum conservation ✓ Ψ + ∂ N with discharge Q = K c S 4 / 3 (turbulent flow parameterization) ∂ x Neighbouring channels compete with one another leads to an arterial network w w
Röthlisberger channels + M in | Q = Q in p w = p out 500 N 0 m Hydraulic potential − 500 0 5 10 15 20 25 30 35 40 45 Distance km Discharge 10 Q m 3 s − 1 5 0 1500
Jökulhlaups (GLOFs) Nye 1976, Spring & Hutter 1981, Clarke 2003 A success of the Röthlisberger channel theory is the application to ice dammed floods . ∂ t = S 4 / 3 Ψ 3 / 2 ∂ S Combine channel evolution equation � ˜ ASN n ρ i L � A L ∂ N with a lake filling equation at ∂ t = m L � Q x = 0 ρ w g Fowler 2009 � �� �������������� � � � � � � � � � � � � � ������������������������������������������������� ��
Linked cavities Walder 1986, Kamb 1987 Cavities grow through sliding over bedrock Sliding Creep h r Model ∂ ˆ S ∂ t = U b h r � ˜ A ˆ SN n Smaller ‘orifices’ control the flow 10 m Approximate steady-state relationship Effective pressure DECREASES � N Flow is distributed N ( Q ) � Q < 0 with discharge Cavity size is controlled by parameter Λ = U b i.e. depends on effective pressure and sliding speed N n
Drainage system stability Walder 1986, Kamb 1987, Schoof 2010, Hewitt 2011 Energy is still dissipated by water flow Sliding Melting Creep ∂ S ∂ t = m + U b h r � ˜ ASN n ρ i h r A linked cavity system can become unstable to produce channels eg. if discharge becomes sufficiently large, or sliding speed sufficiently low Conversely, a channel can become unstable to cavities eg. if discharge low, or sliding speed sufficiently high
����������� ����� ��� ����������� �� ��� ������� ����� �� ��������� �� ��� ������� �� ������� ����� � �������� ���� � ��������������� ������� �� ��������� �������� �� ������������ �������� ��� ����� �� ��� ����� � ������� ������� �� ��� ���� ���� �� ��� �� � ������� �������� ������� �������� ��������� ������� ����� ��� ���� ��� ���� ����������� ��������� ���� ��� ���� �� �������� �� � ���� ��������� ����� ���� ��� ������ ����� �� �������� ������ � ������� �� �������� ��� ����� ����������� ��� ����� �� �������� ���������� ����� ��� ������ �� ������������� ��� ������� �� ��������������� ��� �� ��� ������ �� ��������� � ���� �������� ������� �� ���� ��� ������� ��� ������� ���������� �� �������� ��������� �� ���� ������� �� �� ���� ����� ������� ������� ���������� �� �������� ��������� ����� ��� �� ���� ��� ������ �������� ��� ���� ����������� �������� �������� ������ �� ������� �� ���� ���� �������� ����� � ��� ������� �������� �� � ��� �� ����� � ��������� �� ��������� � ��� ������ �� �������� ������� ��������� � ������� �� �������� �������� �� �������� � �� �� ���� � �� ����� ���� � �� ���� ����� �� ���� ������� ����� �� �������� ��� ����������� ��������� �� ����������� �������� ���� �� � �� � � � � � �� ��� �� ���� �������� �� ��� ���� �������� ��������� ������ ������� ����� ������ ��������� ��� ����� �� ��� ���� ����� � �������� Seasonal evolution of drainage system Conduits Creep closure Sliding a b Creep closure i Melt � j Schoof 2010 Network of ‘conduits’ forced by prescribed surface runoff b c 10 Ice flow y (km) 5 0 Time e d 10 � y (km) 5 ��� ������� ���� �� ������ ��������� �������� �� ������ � ��� �� ������� ������ �� ����� 0 0 5 10 15 20 0 5 10 15 20 ��� ������������� � �� �� ��� ������� ���������� ����� � ��� � ���� ������� ������� x (km) x (km) � � � � �� � �� � � � � � � � � � ����� � �� �� ��� ��� ������� ��� ������� ���� � �� � � � �� �� ��������� �������� ��� � �� �� �������� �������� �� ��� �������� � ����� ����� �������� � ��� � ��� ��������� � � ��� ��� ��������� � � �� ���� ����� ���� ���� ��� ��������� �������� �� ��� ������� �� � �� � � � ��� � � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � � � � ��
Recommend
More recommend