genus 3 curves a world to explore
play

Genus 3 curves: a world to explore Enric Nart Universitat Aut` - PowerPoint PPT Presentation

Models Classification Enumeration Zeta function Serres obstruction Genus 3 curves: a world to explore Enric Nart Universitat Aut` onoma de Barcelona XVIII Latin American Algebra Colloquium August 2009 Models Classification


  1. Models Classification Enumeration Zeta function Serre’s obstruction Genus 3 curves: a world to explore Enric Nart Universitat Aut` onoma de Barcelona XVIII Latin American Algebra Colloquium August 2009

  2. Models Classification Enumeration Zeta function Serre’s obstruction Aim It is possible to write endlessly on elliptic curves (This is not a threat) Serge Lang

  3. Models Classification Enumeration Zeta function Serre’s obstruction Aim It is possible to write endlessly on elliptic curves (This is not a threat) Serge Lang k = F q finite field of characteristic p

  4. Models Classification Enumeration Zeta function Serre’s obstruction Models of hyperelliptic genus 3 curves y 2 = f ( x ) Weierstrass models (p > 2) f ( x ) ∈ k [ x ] separable polynomial of degree 7 or 8

  5. Models Classification Enumeration Zeta function Serre’s obstruction Models of hyperelliptic genus 3 curves y 2 = f ( x ) Weierstrass models (p > 2) f ( x ) ∈ k [ x ] separable polynomial of degree 7 or 8 y 2 + y = u ( x ) Artin-Schreier models (p = 2) u ( x ) ∈ k ( x ) has divisor of poles on P 1 :  [ x 1 ] + [ x 2 ] + [ x 3 ] + [ x 4 ]   [ x 1 ] + [ x 2 ] + 3[ x 3 ]    div ∞ ( u ) = 3[ x 1 ] + 3[ x 2 ] [ x 1 ] + 5[ x 2 ]     7[ x 1 ]  with x i ∈ P 1 ( k ) The moduli space of hyperelliptic curves has dimension 5

  6. Models Classification Enumeration Zeta function Serre’s obstruction Models of non-hyperelliptic genus 3 curves If C is a non-hyperelliptic curve of genus 3 then the canonical → P 2 is an embedding and the image is a morphism C − non-singular plane quartic: F ( x , y , z ) = 0 Examples x 4 + y 4 + z 4 = 0 x 3 y + y 3 z + z 3 x = 0 (Fermat); (Klein)

  7. Models Classification Enumeration Zeta function Serre’s obstruction Models of non-hyperelliptic genus 3 curves If C is a non-hyperelliptic curve of genus 3 then the canonical → P 2 is an embedding and the image is a morphism C − non-singular plane quartic: F ( x , y , z ) = 0 Examples x 4 + y 4 + z 4 = 0 x 3 y + y 3 z + z 3 x = 0 (Fermat); (Klein) The extrinsic geometry of the embedding in the plane is actually intrinsic. This gives them a lot of structure; for instance, they have (for p > 3) 28 bitangents and 24 flexes The moduli space of non-hyperelliptic curves has dimension 6

  8. Models Classification Enumeration Zeta function Serre’s obstruction Classification of genus 3 curves PROBLEM Classify genus 3 curves up to k -isomorphism

  9. Models Classification Enumeration Zeta function Serre’s obstruction Classification of genus 3 curves PROBLEM Classify genus 3 curves up to k -isomorphism Good models � Shioda Invariants: Dixmier + Ohno Field of moduli vs field of definition Twists. Structure of the automorphism groups Enumeration Stratification of the moduli space: by the automorphism group, by the p -rank, by the number of hyperflexes, ... � Guti´ errez-Shaska dihedral invariants Curves + involutions: ???

  10. Models Classification Enumeration Zeta function Serre’s obstruction p -rank of a curve r ( C ) := dim F p Jac ( C )[ p ]. It coincides with the length of the side of slope zero of the q -Newton polygon of the characteristic polynomial f Jac( C ) ( x ) = x 6 + ax 5 + bx 4 + cx 3 + qbx 2 + q 2 ax + q 3 of the Frobenius endomorphism of Jac( C ) 3 3 3 ordinary � � � � � � � � � � � � ✟ ✟ ✟✟✟✟ ✟✟✟✟ � � � � ✟ ✟ ✟✟ ✟✟ � � 0 3 6 0 2 4 6 0 1 5 6 r ( C ) = 3 r ( C ) = 2 r ( C ) = 1 ✟ ✟ ✑ 3 3 ✑ ✟✟✟✟✟✟ ✟✟✟✟✟✟ ✑✑✑ ✏✑✑✑ r ( C ) = 0 ✏ ✏✏✏ ✏✏✏ 0 6 0 3 6 supersingular type 1 / 3

  11. Models Classification Enumeration Zeta function Serre’s obstruction Classification in characteristic 2 � | W | − 1 if C is hyperelliptic p = 2 = ⇒ r ( C ) = ⌊| Bit | / 2 ⌋ if C is non-hyperelliptic

  12. Models Classification Enumeration Zeta function Serre’s obstruction Classification in characteristic 2 � | W | − 1 if C is hyperelliptic p = 2 = ⇒ r ( C ) = ⌊| Bit | / 2 ⌋ if C is non-hyperelliptic This makes it possible to classify genus 3 curves with prescribed 2-rank (N-Sadornil 2004), (N-Ritzenthaler 2006). For instance, Hyperelliptic curves with r ( C ) = 0 (NS04) All hyperelliptic C with r ( C ) = 0 are k -isomorphic to y 2 + y = ax 7 + bx 6 + cx 5 + dx 4 + e , a � = 0, e ∈ k / ker(tr) They are all of type 1 / 3 ⇒ ( a , b , c , d , e ) k ∗ ⋊ k �→ ( a ′ , b ′ , c ′ , d ′ , e ′ ) C abcde ≃ C a ′ b ′ c ′ d ′ e ′ ⇐ Aut k ( C ) = C 2 , except for: if q is a cube, then Aut k ( C ) = C 2 × C 7 for the 14 curves y 2 + y = ax 7 + e , a ∈ k ∗ / ( k ∗ ) 7 , e ∈ k / ker(tr)

  13. Models Classification Enumeration Zeta function Serre’s obstruction Classification in characteristic 2 All non-hyperelliptic C with r ( C ) = 0 have exactly one bitangent Non-hyperelliptic curves with r ( C ) = 0 and type 1 / 3 (NR06) ( ax 2 + by 2 + cz 2 + eyz ) 2 = x ( y 3 + x 2 z ), with a , b ∈ k , c ∈ k ∗ / ( k ∗ ) 9 , e ∈ k ∗ µ 9 ( k ) �→ ( a ′ , b ′ , c ′ , e ′ ) C abce ≃ C a ′ b ′ c ′ e ′ ⇐ ⇒ ( a , b , c , e ) Aut k ( C ) = { 1 }

  14. Models Classification Enumeration Zeta function Serre’s obstruction Classification in characteristic 2 All non-hyperelliptic C with r ( C ) = 0 have exactly one bitangent Non-hyperelliptic curves with r ( C ) = 0 and type 1 / 3 (NR06) ( ax 2 + by 2 + cz 2 + eyz ) 2 = x ( y 3 + x 2 z ), with a , b ∈ k , c ∈ k ∗ / ( k ∗ ) 9 , e ∈ k ∗ µ 9 ( k ) �→ ( a ′ , b ′ , c ′ , e ′ ) C abce ≃ C a ′ b ′ c ′ e ′ ⇐ ⇒ ( a , b , c , e ) Aut k ( C ) = { 1 } Supersingular non-hyperelliptic curves (NR06) ( ax 2 + cz 2 + dxy + fxz ) 2 = x ( y 3 + x 2 z ), with a , d , f ∈ k , c ∈ k ∗ / ( k ∗ ) 9 µ 9 ( k ) ⋊ k ( a ′ , c ′ , d ′ , f ′ ) C acdf ≃ C a ′ c ′ d ′ f ′ ⇐ ⇒ ( a , c , d , f ) �→ Aut k ( C ) ≤ C 9 ⋊ V 4

  15. Models Classification Enumeration Zeta function Serre’s obstruction Number of rational points in the moduli space M h M nh M 3 3 3 q 5 − q 4 q 6 − q 5 + 1 q 6 − q 4 + 1 ordinary q 4 − 2 q 3 + q 2 q 5 − q 4 q 5 − 2 q 3 + q 2 2-rank two 2( q 3 − q 2 ) q 4 − q 3 q 4 + q 3 − 2 q 2 2-rank one q 3 − q 2 q 2 q 3 type 1 / 3 q 2 q 2 supersingular 0 q 6 + 1 q 6 + q 5 + 1 q 5 total

  16. Models Classification Enumeration Zeta function Serre’s obstruction Number of curves r ( C ) hyperelliptic non-hyperelliptic 2 q 5 − 2 q 4 + 2 q 3 − 4 q 2 + 2 q q 6 − q 5 + q 4 − 3 q 3 + 5 q 2 − 6 q + 7 3 2 q 4 − 4 q 3 + 3 q 2 − q q 5 − q 4 + q 3 − 2 q 2 + 2 q − 1 2 4 q 3 − 2 q 2 − 2 q 4 − 2 q 2 + q 1 2 q 2 + [12] q ≡ 1 (mod 7) q 3 − q 2 0 ( 1 3 ) 2 q 2 − q + [4 q − 2] q ≡ 1 (mod 3) 0 (ss) 0 +[6] q ≡ 1 (mod 9) 2 q 5 + 2 q 3 − q 2 + q − 2 q 6 + q 4 − q 3 + 2 q 2 + 4 − total +[12] q ≡ 1 (mod 7) [4 q − 2] q ≡− 1 (mod 3) + [6] q ≡ 1 (mod 9)

  17. Models Classification Enumeration Zeta function Serre’s obstruction Number of hyperelliptic curves if p > 2 2 q 5 + 2 q 3 − 2 − 2[ q 2 − q ] 4 | q +1 + 2[ q − 1] p > 3 + [4] 8 | q − 1 + +[12] 7 | q − 1 + [2] p =7 + [2] q ≡ 1 , 5 (mod 12) Among them, the number of self-dual curves is � 0 , if q ≡ 1 (mod 4) 2 q 2 − 2 q + [2] p > 3 + [4] 8 | q +1 , if q ≡ 3 (mod 4)

  18. Models Classification Enumeration Zeta function Serre’s obstruction Zeta function If N n := # C ( F q n ), there exist a , b , c ∈ Z such that   N n � n x n  = Z ( C / F q , x ) = exp n ≥ 1 1 + ax + bx 2 + cx 3 + qbx 4 + q 2 ax 5 + q 3 x 6 (1 − x )(1 − qx )

  19. Models Classification Enumeration Zeta function Serre’s obstruction Zeta function If N n := # C ( F q n ), there exist a , b , c ∈ Z such that   N n � n x n  = Z ( C / F q , x ) = exp n ≥ 1 1 + ax + bx 2 + cx 3 + qbx 4 + q 2 ax 5 + q 3 x 6 (1 − x )(1 − qx ) PROBLEM What polynomials occur as the numerator of the zeta function of a projective smooth genus 3 curve over F q ? For what values of ( N 1 , N 2 , N 3 ) ∈ Z 3 there exists a projective smooth genus 3 curve C over F q such that # C ( F q ) = N 1 , # C ( F q 2 ) = N 2 , # C ( F q 3 ) = N 3 ?

  20. Models Classification Enumeration Zeta function Serre’s obstruction Jacobians enter into the game The characteristic polynomial of the Frobenius endomorphism of Jac( C ) is f Jac( C ) ( x ) = x 6 + ax 5 + bx 4 + cx 3 + qbx 2 + q 2 ax + q 3 We know all Weil polynomials that occur as f A ( x ) for some abelian threefold A / k . Thus, we need only to identify inside this family, the subfamily of all Weil polynomials of Jacobians: � � f Jac( C ) ( x ) | C / k genus 3 curve ⊆ { f A ( x ) | A / k abelian 3-fold }

Recommend


More recommend