Generic modules and rational invariants for gentle algebras Andrew T. Carroll University of Missouri, Columbia, MO Number Theory and Representation Theory September 27, 2012
Plan of the talk: Gentle algebras 1 Generic Decomposition 2 Semi-invariants 3
Definition Given a character χ : GL( d ) → k ∗ , SI( A, C ) χ = { f ∈ k [ C ] | g · f = χ ( g ) f } is called the space of semi-invariants of weight χ . The scheme � M ( A, C, χ ) := Proj SI( A, C ) n · χ n ≥ 0 is a GIT quotient of the subset of χ -semi-stable points in C .
Conjecture 1. Weyman A is tame if and only if for each irreducible component and each weight M ( A, C, χ ) is simply a product of projective spaces. (Note: in wild type, can get any conceivable projective variety) 2. Chindris A is tame if and only if for each irreducible component C in which the generic module is indecomposable, k ( C ) GL( d ) = k ( t ) . 1,2 have been shown in case A = kQ is a path algebra [Chindris]; 1,2 ( ⇒ ) have been shown in this case and when A is a so-called quasi-tilted algebra; (C.-Chindris) forward implications when kQ/I is a gentle algebra.
Gentle algebras
Colorings A coloring c : Q 1 → { 1 , . . . , m } is a surjection with c − 1 ( i ) is a path for each i . I c := � a 2 a 1 | a 1 → a 2 − − → , c ( a 1 ) = c ( a 2 ) � Example 1 2 3 4 5 6 7 8
Definition/Proposition If kQ/I is an acyclic gentle algebra, then there is a coloring c of Q with I = I c . Definition Fix A = kQ/I c , and d ∈ N Q 0 rank function is a map r : Q 1 → N s.t. x ⇒ r ( a 1 ) + r ( a 2 ) ≤ d ( x ) mod( A, d, r ) ⊂ mod( A, d ) the algebraic set { V ∈ mod d ( A ) | rank V a ≤ r ( a ) ∀ a ∈ Q 1 }
Proposition (Corollary to DeConcini-Strickland) mod A ( d, r ) is an irreducible component of mod A ( d ) whenever r is maximal; mod A ( d, r ) is normal. Goal Given an irreducible component mod( A, d, r ) , determine the structure of the generic module; Determine k (mod( A, d, r )) GL( d ) , and a transcendence basis; Show that M ( A, mod A ( d, r ) , χ ) is a product of projective spaces.
Generic Decomposition
Goal: In each irreducible component C ⊂ mod( A, d ) determine a dense subset U ⊂ C a decomposition d = d 1 + . . . + d m such that for all M ∈ U , M ∼ = M 1 ⊕ . . . ⊕ M m where M i is indecomposable of dimension d i . [Kac] Such a decomposition of d exists; [Gabriel] If Ext 1 A ( M, M ) = 0 , then U = GL( d ) · M ;
Krull-Schmidt-type property If C 1 , . . . , C m are irreducible components, C i ⊂ mod A ( d i ) , consider � C 1 ⊕ . . . ⊕ C m := GL( d ) · ( M 1 ⊕ . . . ⊕ M m ) M i ∈ C i Theorem (Crawley-Boevey Schr¨ oer) If C is an irreducible component, then C = C 1 ⊕ . . . ⊕ C m where C i are indecomposable irreducible components and min { dim Ext 1 A ( M i , M j ) | M l ∈ C l } = 0 for all i � = j . Moreover, this decomposition is unique
Fix A = kQ/I c a gentle algebra X = { ( x, s ) ∈ Q 0 × S | ∃ a ∈ Q 1 with c ( a ) = s } sign function ǫ : X → {± 1 } with ǫ ( x, s 1 ) = − ǫ ( x, s 2 ) when s 1 � = s 2 − + − + + − − + − + − +
For fixed d and r , construct a digraph Γ = Γ Q,c ( d, r, ǫ ) : Γ 0 = { v x j | x ∈ Q 0 , j = 1 , . . . , d ( x ) } j | a ∈ Q 1 , j = 1 , . . . , r ( a ) } : suppose x a Γ 1 = { f a − → y ∈ Q 1
− + − + + − − + − + − +
v (1) v (2) v (3) 1 1 1 v (1) v (2) 2 2 v (1) v (2) 3 3 v (2) 4 v (4) v (5) v (6) 1 1 1 v (4) v (5) v (6) 2 2 2 v (5) 3
v (1) v (3) v (2) 1 1 1 v (1) v (2) 2 2 v (2) v (1) 3 3 v (2) 4 v (4) v (5) v (6) 1 1 1 λ v (4) v (5) v (6) 2 2 2 v (5) 3
After decorating Γ( d, r, ǫ ) with scalars λ ∈ ( k ∗ ) B , we get a representation M ( d, r, ǫ ) λ Theorem (C.) The generic module in mod A ( d, r ) is isomorphic to M ( d, r, ǫ ) λ . I.e., � λ ∈ ( k ∗ ) B GL( d ) M ( d, r, ǫ ) λ is dense in mod A ( d, r ) . Sketch: ∂ 0 (1) Find an explicit projective resolution . . . → P 1 − → P 0 → M λ ; (2) Ext 1 ( M λ , M λ ′ ) = 0 whenever λ, λ ′ share no common entries; (3) Ext 1 ( M λ , M λ ) = 1 when Γ consists of a single cycle (so M λ is indecomposable); (4) From Kraft, there is an injective map: → Ext 1 ( X, X ) T X ( C ) /T X (GL( d ) · X ) ֒ and C = mod( A, d, r ) is smooth at M λ .
Semi-invariants
∂ 0 ( X ) P 0 ( X ) Suppose P 1 ( X ) X is a minimal projective presentation of X in mod A . Hom A ( ∂ 0 ( X ) ,M ) Consider Hom A ( P 0 ( X ) , M ) − − − − − − − − − − → Hom A ( P 1 ( X ) , M ) obtained by applying Hom A ( − , M ) to the presentation. If Hom A ( ∂ 0 ( X ) , M ) is a square matrix, define c X ( M ) := det Hom( ∂ 0 ( X ) , M ) c X : mod A (dim M ) → k is a semi-invariant function (Schofield). Definition An irreducible component is called regular if the generic module is the sum of band modules ( Γ ’s connected components are cycles).
Proposition (C.-Chindris) If mod A ( d, r ) is regular then the following hold: mod A ( d, r ′ ) regular implies r = r ′ ; If mod A ( d, r ) = mod A ( d 1 , r 1 ) m 1 ⊕ . . . ⊕ mod A ( d n , r n ) m n then c M ( d i ,r i ) λ : mod A ( d, r ) → k is a well-defined (non-trivial) semi-invariant of weight θ d i . Thus c M ( d i ,r i ) λ c M ( d i ,r i ) µ ∈ k (mod A ( d, r )) GL( d ) .
Theorem (C.-Chindris) Let { λ ( i, j ) | i = 1 , . . . , n, j = 0 , . . . , m i } be distinct fixed elements of k ∗ . Then � � � c M ( d i ,r i ) λ ( i,j ) � f i,j = � i = 1 , . . . , n, j = 0 , . . . , m i − 1 � c M ( d i ,r i ) λ ( i,j +1) � is a transcendental basis for k (mod( d, r )) GL( d ) .
Sketch: Calin next week: If C is Schur ( min M ∈ C dim k End( M ) = 1 ), and A is tame then k ( C ) GL( d ) is purely transcendental of transcendence degree 1; if mod A ( d, r ) is indecomposable, then it is Schur (combinatorics of a certain bilinear form); Since d i � = d j for any summands of mod A ( d, r ) , k (mod A ( d, r )) GL( d ) is purely transcendental of transcendence degree equal to the number of direct summands N ; i,j D ( c M ( d i ,r i ) λ ( i,j ) ) The f i,j separate orbits in the open set � Kraft: k (mod( d, r )) GL( d ) = k ( { f i,j } ) # { f i,j | i = 1 , . . . , n, j = 0 , . . . , m i − 1 } = N .
Thank You!
Recommend
More recommend