generalized ehrhart polynomials
play

Generalized Ehrhart Polynomials Nan Li (MIT) with Sheng Chen (HIT) - PowerPoint PPT Presentation

Generalized Ehrhart Polynomials Nan Li (MIT) with Sheng Chen (HIT) and Steven Sam (MIT) Aug 5, 2010 Fpsac Outline Ehrhart Theorem Generalized Ehrhart polynomials by examples Main theorem in three equivalent versions Proof:


  1. Generalized Ehrhart Polynomials Nan Li (MIT) with Sheng Chen (HIT) and Steven Sam (MIT) Aug 5, 2010 Fpsac

  2. Outline • Ehrhart Theorem • Generalized Ehrhart polynomials by examples • Main theorem in three equivalent versions • Proof: “writing in base n” trick • Further questions

  3. Ehrhart Theorem Let P ⊂ R d be a polytope with rational vertices. (0 , n ) • � � (0 , 1) ����������� • � � � � � � � � nP � P � � • • � � ( 1 (0 , 0) 2 , 0) � • • � ( 1 (0 , 0) 2 n , 0) � 4 n 2 + n + 1 1 n even #( nP ∩ Z 2 ) = 4 n 2 + n + 3 1 n odd 4 Definition We call f ( n ) a quasi-polynomial, if f ( n ) = f i ( n ) ( n ≡ i mod T ), for some T ∈ N and polynomials f i ( n )’s. Theorem (Ehrhart) i ( P , n ) = #( nP ∩ Z d ) is a quasi-polynomial. In particular, if P has integral vertices, i ( P , n ) is a polynomial, called the Ehrhart polynomial .

  4. Example: non homogenous “dilation”  2 x + y ≤ n + 1   (0 , n + 1) ����������� • x ≥ 0  y ≥ 0    2 x + y = n + 1 2 x + y ≤ n   • •   ( n 2 + 1 = + (0 , 0) 2 , 0) x ≥ 0 x ≥ 0   y ≥ 0 y ≥ 0   • (0 , n + 1) � � � � � � � � � � • The number of integer points on this diagonal is � ( n 2 + 1 2 , 0) f ( n ) = # { ( x , y ) ∈ Z 2 ≥ 0 | 2 x + y = n + 1 }

  5. Example: non homogenous “dilation”  2 x + y ≤ n + 1   (0 , n + 1) ����������� • x ≥ 0  y ≥ 0    2 x + y = n + 1 2 x + y ≤ n   • •   ( n 2 + 1 = + (0 , 0) 2 , 0) x ≥ 0 x ≥ 0   y ≥ 0 y ≥ 0   • (0 , n + 1) � � � � � � � � � � • The number of integer points on this diagonal is � ( n 2 + 1 2 , 0) f ( n ) = # { ( x , y ) ∈ Z 2 ≥ 0 | 2 x + y = n + 1 }

  6. Example: non homogenous “dilation”  2 x + y ≤ n + 1   (0 , n + 1) ����������� • x ≥ 0  y ≥ 0    2 x + y = n + 1 2 x + y ≤ n   • •   ( n 2 + 1 = + (0 , 0) 2 , 0) x ≥ 0 x ≥ 0   y ≥ 0 y ≥ 0   • (0 , n + 1) � � � � � � � � � � • The number of integer points on this diagonal is � ( n 2 + 1 2 , 0) f ( n ) = # { ( x , y ) ∈ Z 2 ≥ 0 | 2 x + y = n + 1 }

  7. Theorem (Popoviciu’s Formula) The number of nonnegative integer solutions ( x , y ) to ax + by = m, where a , b are coprime integers, is given by the formula � ma ′ � � mb ′ � m ab − − + 1 , b a where { r } = r − ⌊ r ⌋ and a ′ and b ′ are any integers satisfying aa ′ + bb ′ = 1 . Example For 2 x + y = n + 1, we have a = 2 , b = 1 , a ′ = 1 , b ′ = − 1 Then � n +3 � n + 1 � � − ( n + 1) � n + 1 n odd 2 − − + 1 = 2 1 2 n 2 + 1 n even

  8. Example: nonlinear “dilation” (0 , n 2 + 2 n ) • • • • � �   � � � � � = 1 � �  �  + � �   � 2 �   � � � � � � • • • • • � � (0 , 0) (2 n + 4 , 0) The number of integer points on the diagonal is ≥ 0 | ( n 2 + 2 n ) x + (2 n + 4) y = (2 n + 4)( n 2 + 2 n ) } f ( n ) = # { ( x , y ) ∈ Z 2 We can not use Popoviciu’s Formula directly, so we need the following generalizations: • Replace GCD ( a , b ) = 1, a , b ∈ Z by GCD ( a ( n ) , b ( n )) = 1 for all n ∈ Z , where a ( n ) , b ( n ) ∈ Z [ n ] � n − 1 � � a ( n ) � • Replace by function , a ( n ) , b ( n ) ∈ Z [ n ]. 2 b ( n )

  9. Example: nonlinear “dilation” (0 , n 2 + 2 n ) • • • • � �   � � � � � = 1 � �  �  + � �   � 2 �   � � � � � � • • • • • � � (0 , 0) (2 n + 4 , 0) The number of integer points on the diagonal is ≥ 0 | ( n 2 + 2 n ) x + (2 n + 4) y = (2 n + 4)( n 2 + 2 n ) } f ( n ) = # { ( x , y ) ∈ Z 2 We can not use Popoviciu’s Formula directly, so we need the following generalizations: • Replace GCD ( a , b ) = 1, a , b ∈ Z by GCD ( a ( n ) , b ( n )) = 1 for all n ∈ Z , where a ( n ) , b ( n ) ∈ Z [ n ] � n − 1 � � a ( n ) � • Replace by function , a ( n ) , b ( n ) ∈ Z [ n ]. 2 b ( n )

  10. Example: nonlinear “dilation” (0 , n 2 + 2 n ) • • • • � �   � � � � � = 1 � �  �  + � �   � 2 �   � � � � � � • • • • • � � (0 , 0) (2 n + 4 , 0) The number of integer points on the diagonal is ≥ 0 | ( n 2 + 2 n ) x + (2 n + 4) y = (2 n + 4)( n 2 + 2 n ) } f ( n ) = # { ( x , y ) ∈ Z 2 We can not use Popoviciu’s Formula directly, so we need the following generalizations: • Replace GCD ( a , b ) = 1, a , b ∈ Z by GCD ( a ( n ) , b ( n )) = 1 for all n ∈ Z , where a ( n ) , b ( n ) ∈ Z [ n ] � n − 1 � � a ( n ) � • Replace by function , a ( n ) , b ( n ) ∈ Z [ n ]. 2 b ( n )

  11. Example � � n 2 +2 n and GCD ( n 2 + 2 n , 2 n + 4). Compute 2 n +4 • n = 2 m , n 2 + 2 n = 4 m 2 + 4 m = m (4 m + 4). � � = 0 and GCD ( n 2 + 2 n , 2 n + 4) = 2 n + 4. n 2 +2 n 2 n +4 • n = 2 m + 1, n 2 + 2 n = 4 m 2 + 8 m + 3 = m (4 m + 6) + (2 m + 3). � � � � n 2 +2 n m + 2 m +3 = 2 m +3 4 m +6 = 1 = 2 . 2 n +4 4 m +6 For GCD , we apply Euclidean algorithm and get 4 m + 6 = 2(2 m + 3), So GCD ( n 2 + 2 n , 2 n + 4) = 2 m + 3 = n + 2 Therefore, � n 2 + 2 n � � � 0 n even 2 n + 4 n even and GCD ( n 2 +2 n , 2 n +4) = = 1 2 n + 4 n odd n + 2 n odd 2

  12. Example � � n 2 +2 n and GCD ( n 2 + 2 n , 2 n + 4). Compute 2 n +4 • n = 2 m , n 2 + 2 n = 4 m 2 + 4 m = m (4 m + 4). � � = 0 and GCD ( n 2 + 2 n , 2 n + 4) = 2 n + 4. n 2 +2 n 2 n +4 • n = 2 m + 1, n 2 + 2 n = 4 m 2 + 8 m + 3 = m (4 m + 6) + (2 m + 3). � � � � n 2 +2 n m + 2 m +3 = 2 m +3 4 m +6 = 1 = 2 . 2 n +4 4 m +6 For GCD , we apply Euclidean algorithm and get 4 m + 6 = 2(2 m + 3), So GCD ( n 2 + 2 n , 2 n + 4) = 2 m + 3 = n + 2 Therefore, � n 2 + 2 n � � � 0 n even 2 n + 4 n even and GCD ( n 2 +2 n , 2 n +4) = = 1 2 n + 4 n odd n + 2 n odd 2

  13. Example � � n 2 +2 n and GCD ( n 2 + 2 n , 2 n + 4). Compute 2 n +4 • n = 2 m , n 2 + 2 n = 4 m 2 + 4 m = m (4 m + 4). � � = 0 and GCD ( n 2 + 2 n , 2 n + 4) = 2 n + 4. n 2 +2 n 2 n +4 • n = 2 m + 1, n 2 + 2 n = 4 m 2 + 8 m + 3 = m (4 m + 6) + (2 m + 3). � � � � n 2 +2 n m + 2 m +3 = 2 m +3 4 m +6 = 1 = 2 . 2 n +4 4 m +6 For GCD , we apply Euclidean algorithm and get 4 m + 6 = 2(2 m + 3), So GCD ( n 2 + 2 n , 2 n + 4) = 2 m + 3 = n + 2 Therefore, � n 2 + 2 n � � � 0 n even 2 n + 4 n even and GCD ( n 2 +2 n , 2 n +4) = = 1 2 n + 4 n odd n + 2 n odd 2

  14. Example � � n 2 +2 n and GCD ( n 2 + 2 n , 2 n + 4). Compute 2 n +4 • n = 2 m , n 2 + 2 n = 4 m 2 + 4 m = m (4 m + 4). � � = 0 and GCD ( n 2 + 2 n , 2 n + 4) = 2 n + 4. n 2 +2 n 2 n +4 • n = 2 m + 1, n 2 + 2 n = 4 m 2 + 8 m + 3 = m (4 m + 6) + (2 m + 3). � � � � n 2 +2 n m + 2 m +3 = 2 m +3 4 m +6 = 1 = 2 . 2 n +4 4 m +6 For GCD , we apply Euclidean algorithm and get 4 m + 6 = 2(2 m + 3), So GCD ( n 2 + 2 n , 2 n + 4) = 2 m + 3 = n + 2 Therefore, � n 2 + 2 n � � � 0 n even 2 n + 4 n even and GCD ( n 2 +2 n , 2 n +4) = = 1 2 n + 4 n odd n + 2 n odd 2

  15. Generalized division and GCD Definition Let f ( n ), g ( n ) be polynomial functions Z → Z . Define functions q , the quotient , r , the remainder and ggcd , the generalized GCD of f and g as follows: for each n ∈ Z , � f ( n ) � f ( n ) � � q ( n ) = , r ( n ) = g ( n ) , and ggcd ( n ) = GCD ( f ( n ) , g ( n )) . g ( n ) g ( n ) Theorem (Chen, L., Sam) Functions q, r, ggcd are quasi-polynomials for n sufficiently large.

  16. Back to example: nonlinear dilation (0 , n 2 + 2 n ) • � � � � # { P ( n ) ∩ Z 2 } � P ( n ) = � 2 (( n 2 + 2 n + 1)(2 n + 5) + f ( n )), where � = 1 � � � • • � (0 , 0) (2 n + 4 , 0) ≥ 0 | ( n 2 + 2 n ) x + (2 n + 4) y = (2 n + 4)( n 2 + 2 n ) } . f ( n ) = # { ( x , y ) ∈ Z 2 Now by generalized division and GCD, we can apply Popoviciu’s Formula and get � 2 n + 5 n even f ( n ) = n + 3 n odd

  17. Back to example: nonlinear dilation (0 , n 2 + 2 n ) • � � � � # { P ( n ) ∩ Z 2 } � P ( n ) = � 2 (( n 2 + 2 n + 1)(2 n + 5) + f ( n )), where � = 1 � � � • • � (0 , 0) (2 n + 4 , 0) ≥ 0 | ( n 2 + 2 n ) x + (2 n + 4) y = (2 n + 4)( n 2 + 2 n ) } . f ( n ) = # { ( x , y ) ∈ Z 2 Now by generalized division and GCD, we can apply Popoviciu’s Formula and get � 2 n + 5 n even f ( n ) = n + 3 n odd

Recommend


More recommend