general relativity
play

General Relativity Spacetime tells matter how to move; matter tells - PowerPoint PPT Presentation

General Relativity Spacetime tells matter how to move; matter tells spacetime how to curve. John Wheeler 3 Gravitational Waves Strain on spacetime. Generated by time-varying quadrupole moment. Propagate at speed of light. Unimpeded


  1. General Relativity “Spacetime tells matter how to move; matter tells spacetime how to curve.” — John Wheeler

  2. 3

  3. Gravitational Waves Strain on spacetime. Generated by time-varying quadrupole moment. Propagate at speed of light. Unimpeded by matter. 4

  4. 0.000000000000000000001 credit: wikipedia

  5. LIGO-Virgo Network Hanford, WA Pisa, Italy Livingston, LA 6

  6. 7

  7. 8

  8. O1 BBH: Abbott et al. (2016) PRX 6, 041015 GW170104: Abbott et al. (2017) PRL 118, 221101 GW170608: Abbott et al. (2017) ApJL 851 L35 GW170814: Abbot et al. (2017) PRL 119, 141101 9

  9. Isolated (“Field”) Formation Belczynski et al. (2016) 11

  10. Dynamical Formation Rodriguez et al. (2016) credit: Carl Rodriguez 12

  11. Black Hole Spins prior 13

  12. Black Hole Spins Abbott et al. (2016): PRX 6 , 041015 GW150914 BH spin not extremal 13

  13. Black Hole Spins Abbott et al. (2016): PRX 6 , 041015 LVT151012 13

  14. Black Hole Spins Abbott et al. (2016): PRX 6 , 041015 GW151226 At least one spinning BH 13

  15. <latexit sha1_base64="EHdcnmso4rxYQenBhRrmLNfThYw=">ACPnicdVBa9RAFJ60tq5b26Z69DK4FAQhJCF0t4dC0YvHFdx2YRPCZPZld+hMEmZehCXkl3nxN3jz2IsHRbx6dJKuYEUfPjm+97Hm/dlRQGf+zs7P7YG/4eDR8ODx4dGxe/LkypS15jDjpSz1PGMGpChghgIlzCsNTGUSrOb151+/R60EWXxDjcVJIqtCpELztBSqTuL+VqksWK41qBPG/pBY1zXij0oAy2zEvTRPjGtC+WvqSqjS0QnhPCNu2N/Rqm7oj3zsfn4dnEe1AFEV+ByaRP5nQwP7GpFtTVP3U7wsea2gQC6ZMYvArzBpmEbBJbTDuDZQMX7DVrCwsGAKTNL057f01DJLmpfadoG0Z/90NEwZs1GZnezuNH9rHfkvbVFjPkaUVQ1QsHvFuW1pFjSLku6FBo4yo0FjGth/0r5mtns0CY+tCH8vpT+H1yFXuB7wdtodPlqG8eAPCPyQsSkDG5JG/IlMwIJx/ILflKvjkfnS/Od+fH3eiOs/U8JfK+fkLpTSuKw=</latexit> <latexit sha1_base64="EHdcnmso4rxYQenBhRrmLNfThYw=">ACPnicdVBa9RAFJ60tq5b26Z69DK4FAQhJCF0t4dC0YvHFdx2YRPCZPZld+hMEmZehCXkl3nxN3jz2IsHRbx6dJKuYEUfPjm+97Hm/dlRQGf+zs7P7YG/4eDR8ODx4dGxe/LkypS15jDjpSz1PGMGpChghgIlzCsNTGUSrOb151+/R60EWXxDjcVJIqtCpELztBSqTuL+VqksWK41qBPG/pBY1zXij0oAy2zEvTRPjGtC+WvqSqjS0QnhPCNu2N/Rqm7oj3zsfn4dnEe1AFEV+ByaRP5nQwP7GpFtTVP3U7wsea2gQC6ZMYvArzBpmEbBJbTDuDZQMX7DVrCwsGAKTNL057f01DJLmpfadoG0Z/90NEwZs1GZnezuNH9rHfkvbVFjPkaUVQ1QsHvFuW1pFjSLku6FBo4yo0FjGth/0r5mtns0CY+tCH8vpT+H1yFXuB7wdtodPlqG8eAPCPyQsSkDG5JG/IlMwIJx/ILflKvjkfnS/Od+fH3eiOs/U8JfK+fkLpTSuKw=</latexit> <latexit sha1_base64="EHdcnmso4rxYQenBhRrmLNfThYw=">ACPnicdVBa9RAFJ60tq5b26Z69DK4FAQhJCF0t4dC0YvHFdx2YRPCZPZld+hMEmZehCXkl3nxN3jz2IsHRbx6dJKuYEUfPjm+97Hm/dlRQGf+zs7P7YG/4eDR8ODx4dGxe/LkypS15jDjpSz1PGMGpChghgIlzCsNTGUSrOb151+/R60EWXxDjcVJIqtCpELztBSqTuL+VqksWK41qBPG/pBY1zXij0oAy2zEvTRPjGtC+WvqSqjS0QnhPCNu2N/Rqm7oj3zsfn4dnEe1AFEV+ByaRP5nQwP7GpFtTVP3U7wsea2gQC6ZMYvArzBpmEbBJbTDuDZQMX7DVrCwsGAKTNL057f01DJLmpfadoG0Z/90NEwZs1GZnezuNH9rHfkvbVFjPkaUVQ1QsHvFuW1pFjSLku6FBo4yo0FjGth/0r5mtns0CY+tCH8vpT+H1yFXuB7wdtodPlqG8eAPCPyQsSkDG5JG/IlMwIJx/ILflKvjkfnS/Od+fH3eiOs/U8JfK+fkLpTSuKw=</latexit> <latexit sha1_base64="EHdcnmso4rxYQenBhRrmLNfThYw=">ACPnicdVBa9RAFJ60tq5b26Z69DK4FAQhJCF0t4dC0YvHFdx2YRPCZPZld+hMEmZehCXkl3nxN3jz2IsHRbx6dJKuYEUfPjm+97Hm/dlRQGf+zs7P7YG/4eDR8ODx4dGxe/LkypS15jDjpSz1PGMGpChghgIlzCsNTGUSrOb151+/R60EWXxDjcVJIqtCpELztBSqTuL+VqksWK41qBPG/pBY1zXij0oAy2zEvTRPjGtC+WvqSqjS0QnhPCNu2N/Rqm7oj3zsfn4dnEe1AFEV+ByaRP5nQwP7GpFtTVP3U7wsea2gQC6ZMYvArzBpmEbBJbTDuDZQMX7DVrCwsGAKTNL057f01DJLmpfadoG0Z/90NEwZs1GZnezuNH9rHfkvbVFjPkaUVQ1QsHvFuW1pFjSLku6FBo4yo0FjGth/0r5mtns0CY+tCH8vpT+H1yFXuB7wdtodPlqG8eAPCPyQsSkDG5JG/IlMwIJx/ILflKvjkfnS/Od+fH3eiOs/U8JfK+fkLpTSuKw=</latexit> Black Hole Spins Abbott et al. (2016): PRX 6 , 041015 GW151226 At least one χ e ff = m 1 a 1 cos θ 1 + m 2 a 2 cos θ 2 spinning BH m 1 + m 2 13

  16. O1 + (some of) O2 Farr et al (2017): arXiv:1709.07896 15

  17. Simple Population Model 16

  18. Current Results fraction of informative events w/ χ e ff > 0 ( ρ ) 1 . 75 marginal posterior density fraction of informative events ( α ) 1 . 50 1 . 25 1 . 00 0 . 75 0 . 50 0 . 25 0 . 00 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 17

  19. Current Results fraction of informative events w/ χ e ff > 0 ( ρ ) 1 . 75 marginal posterior density fraction of informative events ( α ) 1 . 50 1 . 25 1 . 00 0 . 75 0 . 50 0 . 25 Dynamical 0 . 00 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 17

  20. Current Results fraction of informative events w/ χ e ff > 0 ( ρ ) 1 . 75 marginal posterior density fraction of informative events ( α ) 1 . 50 1 . 25 1 . 00 0 . 75 0 . 50 0 . 25 Dynamical Field 0 . 00 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 17

  21. Spin Magnitudes Aligned Isotropic 2 . 5 3 . 0 3 . 0 2 . 5 2 . 0 2 . 5 2 . 0 2 . 0 1 . 5 p ( a ) p ( a ) p ( a ) 1 . 5 1 . 5 1 . 0 1 . 0 1 . 0 0 . 5 0 . 5 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 a a a 18

  22. 19 19

  23. GW170817 20

  24. Abbott et al. (2017) arXiv:1710.05833 21

  25. Abbott et al. (2017) arXiv:1710.05833 21

  26. 500 Fermi/GBM t-t c SALT LIGO - Virgo Talking Picture 400 (days) ESO-NTT counts/s (arb. scale) frequency (Hz) 1.2 300 SOAR normalized F λ ESO-VLT 200 7000 o 1.4 INTEGRAL/SPI-ACS 100 2.4 4000 o 50 -12 -10 -8 -6 -4 -2 0 2 4 6 400 600 1000 2000 wavelength (nm) t-t c (s) GW LIGO, Virgo γ -ray Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind X-ray Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL UV Swift, HST Optical Swope, DECam, DLT40, REM-ROS2, HST, Las Cumbres, SkyMapper, VISTA, MASTER, Magellan, Subaru, Pan-STARRS1, HCT, TZAC, LSGT, T17, Gemini-South, NTT, GROND, SOAR, ESO-VLT, KMTNet, ESO-VST, VIRT, SALT, CHILESCOPE, TOROS, BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the Sky, AST3-2, ATLAS, Danish Tel, DFN, T80S, EABA IR REM-ROS2, VISTA, Gemini-South, 2MASS,Spitzer, NTT, GROND, SOAR, NOT, ESO-VLT, Kanata Telescope, HST Radio ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ALMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effelsberg -100 -50 0 50 10 -2 10 -1 10 0 10 1 t-t c (s) t-t c (days) 1M2H Swope DLT40 VISTA Chandra 10.86h i 11.08h h 11.24h YJK s 9d X-ray MASTER DECam Las Cumbres J VLA Abbott et al. (2017) arXiv:1710.05833 22 11.31h 11.40h 11.57h 16.4d W iz w Radio

  27. Masses Abbott et al. (2018) arXiv:1805.11579 23

  28. Known NSs Opel and Freire (2016) 24

  29. 500 Fermi/GBM t-t c SALT LIGO - Virgo Talking Picture 400 (days) ESO-NTT counts/s (arb. scale) frequency (Hz) 1.2 300 SOAR normalized F λ ESO-VLT 200 7000 o 1.4 INTEGRAL/SPI-ACS 100 2.4 4000 o 50 -12 -10 -8 -6 -4 -2 0 2 4 6 400 600 1000 2000 wavelength (nm) t-t c (s) GW LIGO, Virgo γ -ray Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind X-ray Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL UV Swift, HST Optical Swope, DECam, DLT40, REM-ROS2, HST, Las Cumbres, SkyMapper, VISTA, MASTER, Magellan, Subaru, Pan-STARRS1, HCT, TZAC, LSGT, T17, Gemini-South, NTT, GROND, SOAR, ESO-VLT, KMTNet, ESO-VST, VIRT, SALT, CHILESCOPE, TOROS, BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the Sky, AST3-2, ATLAS, Danish Tel, DFN, T80S, EABA IR REM-ROS2, VISTA, Gemini-South, 2MASS,Spitzer, NTT, GROND, SOAR, NOT, ESO-VLT, Kanata Telescope, HST Radio ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ALMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effelsberg -100 -50 0 50 10 -2 10 -1 10 0 10 1 t-t c (s) t-t c (days) 1M2H Swope DLT40 VISTA Chandra 10.86h i 11.08h h 11.24h YJK s 9d X-ray MASTER DECam Las Cumbres J VLA Abbott et al. (2017) arXiv:1710.05833 25 11.31h 11.40h 11.57h 16.4d W iz w Radio

  30. EM Counterparts to BNS credit: Berger (2014) 26

  31. GRB and afterglow credit: NASA's Goddard Space Flight Center 27

  32. GRB and afterglow credit: Lijnis Nelemans credit: NASA's Goddard Space Flight Center 27

  33. Kilonova 28

  34. 29

  35. Cowperthwaite et al. (2017) 30 credit:Open Kilonova Catalog

  36. 31

  37. 32

  38. Standard Siren Abbott et al. (2017) arXiv:1710.05835 33

  39. Speed of Gravity temporal offset: 1.74 ± 0.05 s − 3 × 10 − 15 ≤ ∆ v ≥ +7 × 10 − 16 ν EM Abbott et al. (2017) arXiv:1710.05834 34

  40. Conclusions GW170817 was most likely a BNS merger Successful observations of kilonova and afterglow emission Novel measurement of Hubble constant Best measurements of the speed of gravity More to come: O3 : 1 event per week Design : 1 event per day 35

Recommend


More recommend