fully proportional representation as resource allocation
play

Fully Proportional Representation as Resource Allocation: - PowerPoint PPT Presentation

Fully Proportional Representation as Resource Allocation: Approximability Results Piotr Skowron 1 , Piotr Faliszewski 2 , Arkadii Slinko 3 1 p.skowron@mimuw.edu.pl 2 faliszew@agh.edu.pl 3 a.slinko@auckland.ac.nz 1 Uniwersytet Warszawski 2 AGH 3


  1. Fully Proportional Representation as Resource Allocation: Approximability Results Piotr Skowron 1 , Piotr Faliszewski 2 , Arkadii Slinko 3 1 p.skowron@mimuw.edu.pl 2 faliszew@agh.edu.pl 3 a.slinko@auckland.ac.nz 1 Uniwersytet Warszawski 2 AGH 3 University of Auckland 4 maja 2013 Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  2. Problem We want to find the representatives for the set of agents (we want to find the representatives for the society). Alternatives (candidates) a 2 a 1 a 3 a 4 4 2 6 3 5 1 Agents (voters) Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  3. Problem Agents have preferences over alternatives. Alternatives (candidates) 1 : a 1 ≻ a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 a 2 a 1 3 : a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 a 3 a 4 4 : a 3 ≻ a 1 ≻ a 4 ≻ a 2 ≻ a 5 5 : a 1 ≻ a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 4 2 6 3 5 1 Agents (voters) Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  4. Problem We want to select K candidates (in the example K = 2). Alternatives (candidates) 1 : a 1 ≻ a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 a 2 a 1 3 : a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 a 3 a 4 4 : a 3 ≻ a 1 ≻ a 4 ≻ a 2 ≻ a 5 5 : a 1 ≻ a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 4 2 6 3 5 1 Agents (voters) Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  5. Problem We want to select K candidates (in the example K = 2); and to assign each agent to exactly one representative. Alternatives (candidates) 1 : a 1 ≻ a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 a 2 a 1 3 : a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 a 3 a 4 4 : a 3 ≻ a 1 ≻ a 4 ≻ a 2 ≻ a 5 5 : a 1 ≻ a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 4 2 6 3 5 1 Agents (voters) Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  6. Problem Agents have certain satisfaction from the representatives (want to be represented by the candidates they prefer). Alternatives (candidates) 1 : a 1 ≻ a 3 a 3 ≻ a 5 ≻ a 2 ≻ a 4 a 3 2 : a 1 a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 a 1 a 2 a 1 a 3 a 4 3 : a 1 a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 a 1 4 : a 3 ≻ a 1 a 1 ≻ a 4 ≻ a 2 ≻ a 5 a 1 5 : a 1 ≻ a 3 a 3 ≻ a 4 ≻ a 5 ≻ a 2 a 3 a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 6 : a 3 a 3 4 2 6 3 5 1 Agents (voters) Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  7. How to measure the satisfaction of the single agent We can use positional scoring function : � α 1 , α 2 , . . . α m � Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  8. How to measure the satisfaction of the single agent We can use positional scoring function : � α 1 , α 2 , . . . α m � α i means that the satisfaction of the agent v from the candidate that he/she puts in his/her i -th position is α i . Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  9. How to measure the satisfaction of the single agent We can use positional scoring function : � α 1 , α 2 , . . . α m � α i means that the satisfaction of the agent v from the candidate that he/she puts in his/her i -th position is α i . A popular positional scoring function is the Borda score: � m − 1 , m − 2 , . . . 0 � Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  10. How to measure the satisfaction of the single agent – example 1 : a 1 ≻ a 3 a 3 a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 a 1 a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 3 : a 1 a 1 a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 4 : a 3 ≻ a 1 a 1 ≻ a 4 ≻ a 2 ≻ a 5 a 1 5 : a 1 ≻ a 3 a 3 a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 a 3 Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  11. How to measure the satisfaction of the single agent – example 1 : a 1 ≻ a 3 a 3 a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 a 1 a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 3 : a 1 a 1 a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 4 : a 3 ≻ a 1 a 1 ≻ a 4 ≻ a 2 ≻ a 5 a 1 5 : a 1 ≻ a 3 a 3 a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 a 3 For the Borda score ( � 4 , 3 , 2 , 1 , 0 � ): agents 2, 3 and 6 have satisfaction 4, and agents 1, 4 and 5 have satisfaction 3. Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  12. How to aggregate agents’ satisfaction Utilitarian approach — the satisfaction of the agents is the sum of the satisfaction of the individual agents. Egalitarian approach — the satisfaction of the agents is the satisfaction of the least satisfied agent. Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  13. How to aggregate agents’ satisfaction Example: 1 : a 1 ≻ a 3 a 3 a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 a 1 a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 3 : a 1 a 1 a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 4 : a 3 ≻ a 1 a 1 a 1 ≻ a 4 ≻ a 2 ≻ a 5 5 : a 1 ≻ a 3 a 3 a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 a 3 a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  14. How to aggregate agents’ satisfaction Example: 1 : a 1 ≻ a 3 a 3 a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 a 1 a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 3 : a 1 a 1 a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 4 : a 3 ≻ a 1 a 1 a 1 ≻ a 4 ≻ a 2 ≻ a 5 5 : a 1 ≻ a 3 a 3 a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 a 3 a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 Utilitarian approach: 3 + 4 + 4 + 3 + 3 + 4 = 21. Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  15. How to aggregate agents’ satisfaction Example: 1 : a 1 ≻ a 3 a 3 a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 a 1 a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 3 : a 1 a 1 a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 4 : a 3 ≻ a 1 a 1 a 1 ≻ a 4 ≻ a 2 ≻ a 5 5 : a 1 ≻ a 3 a 3 a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 a 3 a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 Utilitarian approach: 3 + 4 + 4 + 3 + 3 + 4 = 21. Egalitarian approach: 3. Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  16. Chamberlin-Courant’s and Monroe’s systems Chamberlin-Courant’s rule In the Chamberlin-Courant’s system we have: The set of the agents N = { 1 , 2 , . . . n } . The set of the alternatives A = { a 1 , a 2 , . . . , a m } . The preference profile — the orderings of all agent. We look for such a subset of alternatives W ( winners ) and such an assignment of the agents to the alternatives from W that: � W � = K . The satisfaction of the agents is maximized. Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  17. Chamberlin-Courant’s and Monroe’s systems Chamberlin-Courant’s rule In the Chamberlin-Courant’s system we have: The set of the agents N = { 1 , 2 , . . . n } . The set of the alternatives A = { a 1 , a 2 , . . . , a m } . The preference profile — the orderings of all agent. We look for such a subset of alternatives W ( winners ) and such an assignment of the agents to the alternatives from W that: � W � = K . The satisfaction of the agents is maximized. Monroe’s system In the Monroe’s system we additionally require that every alternative is assigned to exactly the same number of the agents (with the possible difference equal to 1 if K does not divide the number of the agents n ). Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  18. Chamberlin-Courant’s and Monroe’s systems – example 1 : a 1 a 1 a 1 ≻ a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 a 1 a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 3 : a 1 a 1 a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 4 : a 3 a 3 a 3 ≻ a 1 ≻ a 4 ≻ a 2 ≻ a 5 5 : a 1 a 1 a 1 ≻ a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 a 3 a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 In the Chamberlin-Courant’s system the winners are a 1 i a 3 (maximizing the satisfaction of the agents, equal to 4 · 6 = 24). Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  19. Chamberlin-Courant’s and Monroe’s systems – example 1 : a 1 a 1 a 1 ≻ a 3 ≻ a 5 ≻ a 2 ≻ a 4 2 : a 1 a 1 a 1 ≻ a 2 ≻ a 4 ≻ a 3 ≻ a 5 3 : a 1 a 1 a 1 ≻ a 3 ≻ a 2 ≻ a 4 ≻ a 5 4 : a 3 a 3 a 3 ≻ a 1 ≻ a 4 ≻ a 2 ≻ a 5 5 : a 1 ≻ a 3 a 3 a 3 ≻ a 4 ≻ a 5 ≻ a 2 6 : a 3 a 3 a 3 ≻ a 5 ≻ a 1 ≻ a 2 ≻ a 4 In the Monroe’s system the winners are also a 1 i a 3 , but now every winner must be assigned to 3 agents; thus, we get the satisfaction equal to 23. Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

  20. Winner determination in both systems is difficult The problems of winner determination in both systems are: NP-hard. Hard in terms of parametrized complexity theory. Piotr Skowron, Piotr Faliszewski, Arkadii Slinko Approximability of proportional representation

Recommend


More recommend