fujii shinobu
play

FUJII, Shinobu National Institute of Technology (KOSEN), Oshima - PowerPoint PPT Presentation

Quartic CartanM unzner polynomials and Casimir operators FUJII, Shinobu National Institute of Technology (KOSEN), Oshima College Workshop on the isoparametric theory At Beijing Normal University June 6th., 2019 FUJII, Shinobu ( NIT


  1. Quartic Cartan–M¨ unzner polynomials and Casimir operators FUJII, Shinobu National Institute of Technology (KOSEN), Oshima College Workshop on the isoparametric theory At Beijing Normal University June 6th., 2019 FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 1 / 34

  2. Contents of this talk 1 Introduction 2 Casimir elements and Casimir operators 3 Main Theorem : Quartic Cartan–M¨ unzner polynomials and Casimir operators 4 Squared-norms of moment maps and Casimir operators 5 Summary and Problems FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 2 / 34

  3. Introduction FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 3 / 34

  4. Quartic Cartan–M¨ unzner polynomials FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 4 / 34

  5. Quartic Cartan–M¨ unzner polynomials Definition f ∈ R [ x 1 , . . . , x 2 n ] : Quartic Cartan–M¨ unzner polynomials def ⇐ ⇒ f is homogeneous of degree four, ∥ grad f ( P ) ∥ 2 = 16 ∥ P ∥ 6 for P ∈ R 2 n , ∆ f ( P ) = 8 c ∥ P ∥ 2 for P ∈ R 2 n & ∃ c ∈ R . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 4 / 34

  6. Quartic Cartan–M¨ unzner polynomials Definition f ∈ R [ x 1 , . . . , x 2 n ] : Quartic Cartan–M¨ unzner polynomials def ⇐ ⇒ f is homogeneous of degree four, ∥ grad f ( P ) ∥ 2 = 16 ∥ P ∥ 6 for P ∈ R 2 n , ∆ f ( P ) = 8 c ∥ P ∥ 2 for P ∈ R 2 n & ∃ c ∈ R . FACTS The restriction of f to S 2 n − 1 defines an isoparametric hypersurface in S 2 n − 1 with four distinct principal curvatures and with the multiplicities ( m 1 , m 2 ) . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 4 / 34

  7. Examples of Quartic Cartan–M¨ unzner polynomials The followings are Quartic Cartan–M¨ unzner polynomials: Example ( cf. Nomizu (1973) ) For x 1 , x 2 ∈ R n , we define ( ∥ x 1 ∥ 2 − ∥ x 2 ∥ 2 ) 2 + 4 ⟨ x 1 , x 2 ⟩ 2 . F ( x 1 , x 2 ) := FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 5 / 34

  8. Examples of Quartic Cartan–M¨ unzner polynomials The followings are Quartic Cartan–M¨ unzner polynomials: Example ( cf. Nomizu (1973) ) For x 1 , x 2 ∈ R n , we define ( ∥ x 1 ∥ 2 − ∥ x 2 ∥ 2 ) 2 + 4 ⟨ x 1 , x 2 ⟩ 2 . F ( x 1 , x 2 ) := Example ( cf. Ozeki & Takeuchi (1976) ) For K ∈ { R , C , H } and X ∈ M n, 2 ( K ) , we define ( ) 2 − 4 Tr ( ( t XX ) 2 ) F ( X ) := 3 Tr( t XX ) . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 5 / 34

  9. Examples of Quartic Cartan–M¨ unzner polynomials The followings are Quartic Cartan–M¨ unzner polynomials: Example ( cf. Nomizu (1973) ) For x 1 , x 2 ∈ R n , we define ( ∥ x 1 ∥ 2 − ∥ x 2 ∥ 2 ) 2 + 4 ⟨ x 1 , x 2 ⟩ 2 . F ( x 1 , x 2 ) := Example ( cf. Ozeki & Takeuchi (1976) ) For K ∈ { R , C , H } and X ∈ M n, 2 ( K ) , we define ( ) 2 − 4 Tr ( ( t XX ) 2 ) F ( X ) := 3 Tr( t XX ) . Remark The above examples are invariant polynomials for some SO –actions. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 5 / 34

  10. Examples of Quartic Cartan–M¨ unzner polynomials { P 0 , P 1 , . . . , P m } : symmetric Clifford system, i.e., P i ∈ Sym 2 n ( R ) , P i P j + P j P i = 2 δ ij I 2 n . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 6 / 34

  11. Examples of Quartic Cartan–M¨ unzner polynomials { P 0 , P 1 , . . . , P m } : symmetric Clifford system, i.e., P i ∈ Sym 2 n ( R ) , P i P j + P j P i = 2 δ ij I 2 n . Definition We define F : R 2 n → R as ∑ m F ( x ) := ∥ x ∥ 4 − 2 ⟨ x, P i x ⟩ 2 . i =0 We call F ( x ) a Cartan–M¨ unzner polynomial of OT–FKM type. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 6 / 34

  12. Examples of Quartic Cartan–M¨ unzner polynomials { P 0 , P 1 , . . . , P m } : symmetric Clifford system, i.e., P i ∈ Sym 2 n ( R ) , P i P j + P j P i = 2 δ ij I 2 n . Definition We define F : R 2 n → R as ∑ m F ( x ) := ∥ x ∥ 4 − 2 ⟨ x, P i x ⟩ 2 . i =0 We call F ( x ) a Cartan–M¨ unzner polynomial of OT–FKM type. Remark ⟨ � ⟩ � 0 ≤ i < j ≤ m ⊊ SO(2 n ) . Then, We define H := P i P j the above F ( x ) is H –invariant. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 6 / 34

  13. Our problems and Main Theorems FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 7 / 34

  14. Our problems and Main Theorems Problem 1 Study properties of quartic CM polynomials as invariant polynomials for some group actions, 2 Characterize quartic CM polynomials from a view of invariant theory. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 7 / 34

  15. Our problems and Main Theorems Problem 1 Study properties of quartic CM polynomials as invariant polynomials for some group actions, 2 Characterize quartic CM polynomials from a view of invariant theory. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 7 / 34

  16. Our problems and Main Theorems Problem 1 Study properties of quartic CM polynomials as invariant polynomials for some group actions, 2 Characterize quartic CM polynomials from a view of invariant theory. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 7 / 34

  17. Our problems and Main Theorems Problem 1 Study properties of quartic CM polynomials as invariant polynomials for some group actions, 2 Characterize quartic CM polynomials from a view of invariant theory. Main Results ( rough version ) 1 Some quartic CM polynomials can be written by Casimir operators, 2 Casimir operator approach is related to moment map approach. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 7 / 34

  18. Casimir elements and Casimir operators FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 8 / 34

  19. Notations Assume that g : a semisimple Lie algebra, V : a finite dimensional R –vector space, σ : g → gl ( V ) : a representation of g , B g : the Killing form of g , β σ : g × g → R : symmetric quadratic form on g defined by ( X, Y ) �− → Tr( σ ( X ) σ ( Y )) , ( β σ : trace form associated to σ ) FACTS β σ : Ad( G ) -invariant, where G is a Lie group whose Lie algebra is g . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 9 / 34

  20. Casimir elements Definition { X i } : basis of g , { } X ∗ : B g -dual basis of g , i.e., i B g ( X i , X ∗ j ) = δ i,j , Then, we define C g ∈ gl ( V ) as follows: ∑ X i X ∗ C g := i . i We call C g a Casimir element of g . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 10 / 34

  21. Casimir elements Definition { X i } : basis of g , { } X ∗ : B g -dual basis of g , i.e., i B g ( X i , X ∗ j ) = δ i,j , Then, we define C g ∈ gl ( V ) as follows: ∑ X i X ∗ C g := i . i We call C g a Casimir element of g . Remark The Casimir element C g does not depend on the choices of basis of g and dual basis. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 10 / 34

  22. Casimir elements Definition C g := ∑ i X i X ∗ i is called a Casimir element of g . Remark The Casimir element C g does not depend on the choices of basis of g and dual basis. FACTS C g ∈ U ( g ) , where U ( g ) is the universal enveloping algebra of g , For all X ∈ g , [ C g , X ] = 0 . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 11 / 34

  23. Casimir operators n := Ker σ , � { } n ∗ := � ∀ Y ∈ n , B g ( X, Y ) = 0 X ∈ g , FACTS g = n ⊕ n ∗ . σ | n ∗ : n ∗ → gl ( V ) : faithful representation, FACTS β σ | n ∗ : non–degenerated on n ∗ , where β σ is the trace form associated to σ . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 12 / 34

  24. Casimir operators Definition { X i } : basis of n ∗ , { } X ∗ : β σ | n ∗ -dual basis of n ∗ , i.e., i β σ | n ∗ ( X i , X ∗ j ) = δ i,j , Then, we define C σ ∈ gl ( V ) as follows: ∑ σ ( X i ) σ ( X ∗ C σ := i ) . i We call C g a Casimir operator associated to σ . FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 13 / 34

  25. Casimir operators Definition { X i } : basis of n ∗ , { } X ∗ : β σ | n ∗ -dual basis of n ∗ , i.e., i β σ | n ∗ ( X i , X ∗ j ) = δ i,j , Then, we define C σ ∈ gl ( V ) as follows: ∑ σ ( X i ) σ ( X ∗ C σ := i ) . i We call C g a Casimir operator associated to σ . Remark The Casimir operator C σ does not depend on the choices of basis of n ∗ and dual basis. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 13 / 34

  26. Casimir operators Definition C σ := ∑ i σ ( X i ) σ ( X ∗ i ) is called a Casimir operator associated to σ . Remark The Casimir operator C σ does not depend on the choices of basis of n ∗ and dual basis. FUJII, Shinobu ( NIT (KOSEN), Oshima ) Quartic CM polynomials and Casimir ops 2019/06/06 14 / 34

Recommend


More recommend